
FRC	Tips

by	BoVLB

https://bovlb.github.io/frc-tips/

FRC	Tips 1	of	1

2025-01-28 1

https://bovlb.github.io/frc-tips

1
1
1
2
4
5
5
5
5
5
6
6
6
6
7
7
8
8
8
8
8
8
8

9
9
9
9

10
10
10
10
10
10
11
11
11
12
12
12
14
14
14
14
14
14
15
16
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
19
19
19
20

Table	of	Contents

FRC	Tips
by	BoVLB
https://bovlb.github.io/frc-tips/
Table	of	Contents
FRC	tips
Burnout

Choosing	a	current	limit
Current	limiting

TalonSRX
TalonFX	(including	Falcon	500)
CAN	SparkMAX
Victor	SPX

Temperature	Control
CAN	SparkMAX
TalonSRX	and	TalonFX	(including	Falcon	500)

See	also
CAN	bus

What	is	your	CAN	bus	utilization?
Check	your	wiring
Adjusting	frame	rates

REV	Spark	MAX
CTRE	Phoenix	(e.g.	Talon/Falcon,	Pigeon,	CANcoder)

Motor	controllers	(Talon/Falcon)

Switch	motors	to	PWM
Additional	hardware

CANivore
References	and	further	reading

Coast	mode
Background
Method

Drive	sybsystem
SparkMAX
Talon	FX/SRX	(including	Falcon	500)

Set	brake	mode	on	init
Create	trigger

References
Ramps

Slew	Rate	Limiter
References

Suggestions	for	FRC	Safety	Captains
Binder
General	responsibilities	at	an	event
Judged	awards
Special	event	activities
Further	reading
Youth	Protection	Policy

Commands
void	initialize()
void	execute()
boolean	isFinished()
void	end(boolean	interrupted)
Command	groups

SequentialCommandGroup
ParallelCommandGroup
ParallelRaceGroup
ParallelDeadlineGroup

Commands	used	in	groups
Runnable	wrappers
Subsystem	wrapper	methods
Command	decorators
Running	commands

Triggers
Default	commands
Autonomous	commands

Esoteric	commands
See	also

CommandScheduler

Table	of	Contents 1	of	2

2025-01-28 2

20
20
20
20
20
20
22
22
22
22
23
23
24
24
25
25
26
26
26
27
28
28
29
29
29
30
30
30
31
31
31
31
31
33
34
34
34
34
35
36
36
36
38
38
38
38
39
40
40
41
42
42
42
42
42
42
42

CommandScheduler.getInstance().run()
Trigger	methods
Command.schedule()
Command.cance()
Putting	it	all	together
See	also

Function	References,	Lambda	Functions,	and	more
Function	References

Lambda	Expressions
Method	Reference	Operator

Interfaces
Suppliers
Runnables
Consumers
Callables

See	also
Best	Practices	for	Command-Based	Programming

Summary
Add	command	factories
Add	triggers
Bind	commands	to	triggers

Combining	Triggers
Binding	Triggers	to	Commands
Combining	commands
Default	Commands
Autonomous	routines

Exceptions
Pose	Estimation

Performance
Incremental	Adoption
Subsystem	Periodic	Methods
References
Acknowledgements

RI/CSA	resources
The	Annotated	Inspection	Checklist	(2025)

Size	and	Weight
Bumpers
Mechanical
Electrical
Pneumatic	System	using	one	on-board	compressor	(n/a	for	ROBOTS	that	do	not	use	pneumatics)
Power	On	Check	(Driver	Station	must	be	tethered	to	the	ROBOT)
Reinspection

The	Annotated	Inspection	Checklist	(2024)
Size	and	Weight
Bumpers
Mechanical
Electrical
Pneumatic	System	using	one	on-board	compressor	(n/a	for	ROBOTS	that	do	not	use	pneumatics)
Power	On	Check	(Driver	Station	must	be	tethered	to	the	ROBOT)
Reinspection

Some	useful	FRC	links
FIRST
WPILIB
CTRE	(Cross	The	Road	Electronics)
REV	Robotics
Other
Selected	teams

Table	of	Contents 2	of	2

2025-01-28 3

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/

FRC tips
In the course of volunteering with an FRC team (and at various events), I see the same problems come around
again and again. Some of them have excellent resources already available to provide help; others take a little
digging.

This project is a small collection of tips I’ve gathered to save redoing the same research effort. Largely I’m
just repeating stuff other people already said. Example code is all in Java.

CAN bus: What is my utilization? How much is too much? How do I fix it?
Ramps: How do I stop my robot from falling over when they drive too fast?
Coast mode: How do I make my robot stop, stay stopped, and yet be easy to move?
Burnout: How do you stop your motors from burning out?
Safety Captain: Help! I just got appointed Safety Captain. What do I do now?
Commands: Short guide to WPILIB commands, including lambda functions, and CommandScheduler
Inspection: Some documents to help RIs/CSAs and teams.
Links: What are some useful resources for FRC?

I decided to put this together as a Github repository, partly so I could incorporate code files if I needed to, but mostly to make it easier for
others to correct my inevitable mistakes. You can download the entire website as frc-tips.pdf

Suggestions I have received for future notes:

How to reset and persist motor controllers
Some swerve bot gotchas - see example swervebot
Mecanum Drive gotchas.
How to add your first autonomous routine, including for non-command robots
Checking for errors (e.g. CAN bus devices). Retrying?
How should I configure and use IP addresses? (see IP Configurations) How should I wire the Ethernet on the robot?
Current limits and voltage compensation
How to debug “No robot code”
Example code that uses all commands stuff

FRC	tips	|	BoVLB’s	FRC	Tips 1	of	1

2025-01-28 4

http://localhost:4000/frc-tips/frc-tips.pdf
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/swervebot
https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.html

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/burnout/

Burnout
We put motors on our robots because we want to transform electricity into motion. Unfortunately, because of
internal inefficiencies and forces/torques that resist motion, much of that electrical energy is instead
transformed into heat (and some noise). If a motor becomes too hot, it will fail, usually by burning off the
thin enamel coating on the winding wires. This is often referred to as “letting out the magic smoke”.

If a motor is pushing against more force/torque than it is generating, then all of the input energy is
transformed into heat. This is called “stalling”. Many motors are “self cooling”, which means that as they turn,
air is drawn through the motor to dissipate the heat. Unfortunately, motors are not good at getting rid of heat
when stationary, so stalling is the most common way to burn out motors. Don’t make the mistake of thinking that
a stationary motor is not drawing any power.

Some motors (e.g. CTRE/VEX Falcon 500) have “thermal protection”, which means that they monitor their own internal temperature and simply stop
working until they have cooled down a bit. This is good for protecting your investment, but bad if it happens in the middle of a match. It’s much
better not to reach that point.

Here are some common scenarios when a motor might stall and therefore be at risk of burning out:

A game piece (e.g. a squashy ball) is jammed in the serializer
A robot experiences aggressive defence and is unable to move
A limit switch fails on an intake or turret

Consider making limit switches “normally closed” (NC) so the more common failure mode (disconnection) is detected quickly.
A servo motor is mechanically misaligned and cannot reach its set position
An intake or elevator requires continuous power to stay in position

Consider using brake mode on the motors, adding a physical brake, or changing the mechanical design to reduce the torque
The drive train receives contiunuous small signals that don’t result in (much) movement

While this is usually too small to cause burnout in the typical timescale of an FRC match, it’s a good idea to use deadband on joystick inputs

While in many cases there are other possible solutions, there are some simple things we can do in software to limit this risk. Primarily we can limit
the current on motors. If you look at the manufacturer websites, you can often find charts showing how long a motor will sustain a specific current
before failing. For example, the Falcon 500 will hit thermal protection after about 110 seconds at 50A, and 260 seconds at 40A.

Don’t assume that because a motor is on a 40A circuit, its current will never exceed 40A. It often makes sense to use a current limit that is greater
than the rating of the fuse/circuitbreaker installed on the circuit.

Choosing a current limit
Before applying current limiting, you should get an idea of what your typical current draw is so that your limits don’t affect normal usage. You can
monitor current draw by motors in several ways:

Looking at the PDP/PDH in SmartDashboard/Shuffleboard.
SmartDashboard.putData(new	PowerDistribution());

Looking at your Driver Station logs

In both cases, the first thing you will realise is that you need to know which motor is connected to which circuit. Of course, all the wires on your
PDB/PDH are already clearly labelled, but a cool trick is to use the same CAN bus id as the circuit number. If you do this, it means all of your
circuit numbers are already documented in Constants.java.

For a drive train, a useful technique is put the robot on a carpet, touching a wall and then gradually increase the power until the wheels start to
slip. Set the current limit to the peak current at the moment when the wheels start to slip.

I haven’t tried it myself, but the ILITE Drive Train Simulator is supposed to give some useful information about currents.

Warning The specific current values in the example code below are only for illustration. You should pick your own values.

Current limiting
How you limit the current depends on what sort of motor contoller you’re dealing with. When you set a limit, the controller will reduce the control
inputs to keep the current at that level.

As always, this sort of intervention makes the robot not do what the driver asks for, so should be applied with caution. If drivers find that current
limiting makes it harder to drive the robot then relax (increase) the limits rather than just removing them.

TalonSRX

These controllers allow you to set supply, peak, and continuous current limits. The supply limit is primarly used to prevent breakers from tripping.
The peak limit is engaged whenever the current tries to exceed that level. The continuous limit is engaged if the current tries to exceed that level
for more than a certain time. See the documentation for more details.

//	Use	this	to	stop	breakers	from	tripping

m_motor.configSupplyCurrentLimit(40);	//	Amperes

//	Use	these	to	prevent	burnout

m_motor.configPeakCurrentLimit(35);	//	Amperes

m_motor.configPeakCurrentDuration(200);	//	Milliseconds

m_motor.configContinuousCurrentLimit(25);	//	Amperes

m_motor.enableCurrentLimit(true);

TalonFX (including Falcon 500)

These controllers allow you to limit supply and stator current. The supply current is what is going to pop the breaker. The stator current is what is
going through the windings and will cause burnout. These have two current levels: a higher “threshold” level that activates the limit, and a lower
level that the current is limited to when active. See the documentation for more details.

Burnout	|	BoVLB’s	FRC	Tips 1	of	3

2025-01-28 5

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/MathUtil.html#applyDeadband(double,double)
https://docs.wpilib.org/en/stable/docs/software/driverstation/driver-station-log-viewer.html
https://www.chiefdelphi.com/t/favorite-tools-materials-and-techniques-for-frc-wiring/353212/72?u=bovlb
https://www.chiefdelphi.com/t/how-to-prevent-swerve-drive-motor-burnout/423820/7?u=bovlb
https://github.com/flybotix/drivetrainsim
https://store.ctr-electronics.com/content/api/java/html/classcom_1_1ctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_talon_s_r_x.html
https://store.ctr-electronics.com/content/api/java/html/classcom_1_1ctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_talon_f_x.html#a68a40924fbcf1d8f31c04631a25e437c

//	Use	this	to	stop	breakers	from	tripping

m_motor.configSupplyCurrentLimit(

				new	SupplyCurrentLimitConfiguration(

								true,	//	enable

								35,	//	current	limit	in	Amperes

								40,	//	threshold	current	for	activation	in	Amperes

								0.2	//	time	exceeding	threshold	for	activation	in	seconds

)

);

//	Use	this	to	prevent	burnout

m_motor.configStatorCurrentLimit(

				new	StatorCurrentLimitConfiguration(

								true,	//	enable

								35,	//	current	limit	in	Amperes

								40,	//	threshold	current	for	activation	in	Amperes

								0.2	//	time	exceeding	threshold	for	activation	in	seconds

)

);

CAN SparkMAX

This controller allows you to limit current as a function of the speed of the motor. The actual limit applied is a linear interpolation between the
two values. This means that you can handle the stalling case without limiting the non-stalling current. See the documentation for variants on this
method that allow slightly different control models.

m_motor.setSmartCurrentLimit(

				10,	//	stall	limit	in	Amperes

				100	//	free	speed	limit	in	Amperes

);

CANSparkMax also provides setSecondaryCurrentLimit which works somewhat differently, but you probably don’t want to touch that for an FRC robot.

Victor SPX

The Victor SPX does not provide any current limiting feature.

TODO: Add code snippet on how to limit current based on PDB/PDH reporting.

Temperature Control
Another possible approach is temperature control. Some motor controllers will report the temperature of the motor and you can temporarily stop using
a motor when it is too hot. This technique is not widely applicable in the FRC context, but you might use it, say, if it takes continuous power to
hold an intake up and the consequences of letting the intake droop are fairly minor.

CAN SparkMAX

Burnout	|	BoVLB’s	FRC	Tips 2	of	3

2025-01-28 6

https://codedocs.revrobotics.com/java/com/revrobotics/cansparkmax#setSmartCurrentLimit(int)

boolean	m_stopped;

@Override

public	void	initialize()	{

				//	...

				m_stopped	=	false;

}

@Override

public	void	periodic()	{

				double	motorTemperature	=	m_motor.getMotorTemperature()

				if(m_stopped)	{

								if(motorTemperature	<=	48)	{

												m_stopped	=	false;

								}

				}	else	if(motorTemperature	>	50)	{

								m_stopped	=	true;

				}

				if(m_stopped)	{

								m_motor.set(0)

				}	else	{

								//	do	stuff

				}

}

TalonSRX and TalonFX (including Falcon 500)

The Talon motor controller also has a getTemperature() method, but the documention says that it returns the temperature of the controller, not the
motor. This might be useful with integrated controllers like the Falcon 500, but I have not tested it.

See also
Dalton’s CD reply

Burnout	|	BoVLB’s	FRC	Tips 3	of	3

2025-01-28 7

https://www.chiefdelphi.com/t/current-limiting-on-swerve/454392/2?u=bovlb

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/can-bus/

CAN bus

What is your CAN bus utilization?
The Driver Station and the DS Logs will show you your CAN bus utilization rate. Often this is a fuzzy line that
ranges up to 100%. This doesn’t necessarily mean that your CAN bus utilization is actually that high. The real
value can be seen by zooming in (in the DS Log Viewer) to find the common, stable value. Typically it will be
near the bottom of the fuzzy band.

How much is too high? 70% is fine. If you’re going much higher than that, you’re likely to be experiencing lost packets and various errors. If not,
you should look elsewhere for your problem.

There are four main ways to fix a high CAN utilization. At a competition, they should probably be tried in this order.

Check your wiring and termination. Noisy CAN bus wiring or a missing terminator will reduce available bandwidth.
Adjust the frame rates on your motors.
Switch motors to PWM. This may be appropriate for, say, intake motors, when the precise speed is not important.
Install additional hardware like the CANivore.

Check your wiring
See CAN wiring basics

Do the wiggle check
Check for bare metal or whiskers
Check that the PDP is last in chain and has termination set
Ensure the green and yellow cables are twisted together everywhere
Use Phoenix Tuner and Rev Hardware Client to check device visibility
Turn the robot off, disconnect both ends, and test each wire for continuity using a multimeter.

Adjusting frame rates
If you are having problems with high CAN bus utilization, consider turning down the frame rate. These are not general recommendations! Don’t do it if
you’re not having trouble!

Motor controllers will typically have multiple types of status frame that can be controlled separately. Status frames have multiple uses:

Motor safety watchdog: The roboRIO will shutdown any motor it has not heard from in 100ms.
Following: The follower listens for certain information from the leader.
Software PID: If you are using software PID, then you need to know motor velocity or position every 20ms.
Odometry: If you are using dead reckoning, you need to know motor positions every 20ms.

The motor safety watchdog is an important case. It is recommended that you do not set such frames over 45ms. This means that you can drop the
occasional frame without triggering it.

If a motor is under power/voltage control, or is using firmware PID control with no follower, then status frames can be less frequent.

REV Spark MAX

The Spark MAX has five different types of periodic status frame, but I believe a typical FRC setup will only use the first three.

Type 0 is “Applied … Output” and faults. Default 10ms. I believe this is the one used for the watchdog, so it should not be more than 45ms. I
could be wrong, but I think is also what the follower relies on from the leader.
Type 1 is velocity, temperature, voltage, and current. Default 20ms.
Type 2 is position. Default 20ms.

E.g.

//	Maximum	reasonable	values

leader.setPeriodicFrameRate(PeriodicFrame.kStatus0,	20);

leader.setPeriodicFrameRate(PeriodicFrame.kStatus1,	50);

leader.setPeriodicFrameRate(PeriodicFrame.kStatus2,	50);

follower.setPeriodicFrameRate(PeriodicFrame.kStatus0,	45);

follower.setPeriodicFrameRate(PeriodicFrame.kStatus1,	500);

follower.setPeriodicFrameRate(PeriodicFrame.kStatus2,	500);

CTRE Phoenix (e.g. Talon/Falcon, Pigeon, CANcoder)

Motor controllers (Talon/Falcon)

Ten different types, but two important ones:

Type 1: Applied Motor Output, Fault Information, Limit Switch Information. Default 10ms.
Type 2: Selected Sensor Position, Selected Sensor Velocity, Brushed Supply Current Measurement, Sticky Fault Information. Default 10ms.

CAN	bus	|	BoVLB’s	FRC	Tips 1	of	2

2025-01-28 8

https://docs.wpilib.org/en/stable/docs/hardware/hardware-basics/can-wiring-basics.html
https://store.ctr-electronics.com/software/
https://docs.revrobotics.com/rev-hardware-client/

//	Maximum	reasonable	values

leader.setStatusFramePeriod(StatusFrameEnhanced.Status_1_General,	20);

leader.setStatusFramePeriod(StatusFrameEnhanced.Status_2_Feedback0,	50);

follower.setStatusFramePeriod(StatusFrameEnhanced.Status_1_General,	45);

follower.setStatusFramePeriod(StatusFrameEnhanced.Status_2_Feedback0,	500);

Switch motors to PWM
WPILIB How to wire PWM cables

		private	final	PWMSparkMax	m_leftDrive	=	new	PWMSparkMax(0);

		private	final	PWMSparkMax	m_rightDrive	=	new	PWMSparkMax(1);

Pass to DifferentialDrive or call .set().

Similarly for PWMTalonFX (Falcon 500) and PWMTalonSRX.

WPILIB Using PWN Motor Controllers

Additional hardware

CANivore

Might help. Introduces its own complexity. Doesn’t work with sysid.

CTRE Canivore Hardware Manual

CTRE Bring Up: CANivore

				TalonFX	motor	=	new	TalonFX(deviceNumber,	canivoreName);

References and further reading
Rev Spark MAX periodic status frames
CTRE Setting status frame periods
WPILIB Driver Station log viewer
BaseTalon.setStatusFramePeriod

CD comment: three types of interaction with a CAN device

CAN	bus	|	BoVLB’s	FRC	Tips 2	of	2

2025-01-28 9

https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-1/how-to-wire-a-robot.html?highlight=PWM#pwm-cables
https://docs.wpilib.org/en/stable/docs/software/hardware-apis/motors/using-motor-controllers.html#using-pwm-motor-controllers
https://store.ctr-electronics.com/content/user-manual/CANivore%20User's%20Guide.pdf
https://docs.ctre-phoenix.com/en/stable/ch08a_BringUpCANivore.html
https://docs.revrobotics.com/sparkmax/operating-modes/control-interfaces#periodic-status-frames
https://docs.ctre-phoenix.com/en/stable/ch18_CommonAPI.html#setting-status-frame-periods
https://docs.wpilib.org/en/stable/docs/software/driverstation/driver-station-log-viewer.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/motorcontrol/can/BaseTalon.html#setStatusFramePeriod(com.ctre.phoenix.motorcontrol.StatusFrameEnhanced,int,int)
https://www.chiefdelphi.com/t/can-bus-freezes-on-code-initialization/419481/13?u=bovlb

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/coast-mode/

Coast mode
This document explains how to set neutral/idle mode so that the robot is safe in use, but moveable when
disabled.

Background
When a motor controller is told to setting a motor’s power to zero, this is known as idle mode (also known as
neutral mode). There are two different flavors of idle mode: coast mode and brake mode.

Coast mode effectively disconnects the motor wires so that the motor can turn freely. A spinning motor that is set to coast mode will slow down gradually as a
result of friction. A stationary motor in coast mode provides little resistant to movement.

Brake mode effectively connects the motor wires together so that the motor provides “back EMF” that resists motion. A spinning motor in brake mode will slow down
very quickly when the power is set to zero. A stationary motor in brake mode will be hard to turn.

So which do we want to use on an FRC robot? The answer, in most cases, is brake mode. A drive train in brake mode will stop quickly when commanded
(say before hitting an obstacle). This reduces wear and tear on your practice space and any unobservant humans present. A motor-actuated elevator or
climber will, in brake mode, lock and resist descent, meaning you may be able to get away without adding brakes. A drive train stopped on a ramp will
stay there even after being disabled. Remember that end game points are often assessed some number of seconds after the end of the match.

The main circumstance where you want your robot to be in coast mode is when you are positioning your robot by hand (while it is turned on, but
disabled). It’s very hard to move an FRC robot in brake mode. When you’re perfecting your autonomous routines, you’re going to be spending a lot of
time repositioning your robot.

In this case, it is tempting to say that the robot’s drive train should be in brake mode while enabled, but go into coast mode when disabled. You
might get away with this, but one day you’ll disable your robot when it is going at high speed, and then everyone will be unpleasantly surprised that
it just keeps on going. This has actually happened in some FRC competition matches, where a robot in motion at the end of the match keeps moving,
collides with other robots, and either loses end game points for their alliance or gains fouls as a result.

So what should we do? The best compromise seems to be to enable coast mode only once the robot has been disabled for several seconds, and keep it in
brake mode at all other times. That gives it enough time to stop, allows enough time for post-match judging, but still makes it easy to move your
robot. Fortunately, with appropriate configuration, idle mode commands can be sent to your motors while the robot is disabled.

Method
So how do we do this? You need to do three things:

Create a method in your drive subsystem that can set the idle mode to either coast or brake
Set brake mode in appropriate places
Set coast after several seconds of being disabled

Drive sybsystem

The exact command required will vary depending on your drivetrain and the motor controllers. Here I give code for Spark Max and Talon FX, assuming
two motors on each side.

SparkMAX

/**

	*	Sets	idle	mode	to	be	either	brake	mode	or	coast	mode.

	*

	*	@param	brake	If	true,	sets	brake	mode,	otherwise	sets	coast	mode

	*/

public	Command	setBrakeMode(boolean	brake)	{

				IdleMode	mode	=	brake	?	IdleMode.kBrake	:	IdleMode.kCoast;

				return	Commands.runOnce(()	->	{	//	Instant	command	will	execute	our	

"initialize"	method	and	finish	immediately

								m_leftLeader.setIdleMode(mode);

								m_leftFollower.setIdleMode(mode);

								m_rightLeader.setIdleMode(mode);

								m_rightFollower.setIdleMode(mode);

				}).ignoringDisable(true);	//	This	command	can	run	when	the	robot	is	disabled

}

Talon FX/SRX (including Falcon 500)

Coast	mode	|	BoVLB’s	FRC	Tips 1	of	2

2025-01-28 10

public	Command	setBrakeMode(boolean	brake)	{

				NeutralMode	mode	=	brake	?	NeutralMode.Brake	:	NeutralMode.Coast;

				return	Commands.runOnce(()	->	{

								m_leftLeader.setNeutralMode(mode);

								m_leftFollower.setNeutralMode(mode);

								m_rightLeader.setNeutralMode(mode);

								m_rightFollower.setNeutralMode(mode);

				}).ignoringDisable(true);

}

Set brake mode on init

In Robot.java, in both autonomousInit and teleopInit, add the following line:

m_robotContainer.m_driveSubsystem.setBrakeMode(true).schedule();	//	Enable	brake	

mode

You may need to change this code, depending on where your drive subsystem is created and stored. You may also need to change
RobotContainer.m_driveSubsystem to be public.

Create trigger

In Robot.java, at the end of robotInit, add the following code:

//	Turn	brake	mode	off	shortly	after	the	robot	is	disabled

new	Trigger(this::isEnabled)	//	Create	a	trigger	that	is	active	when	the	robot	is	

enabled

								.negate()	//	Negate	the	trigger,	so	it	is	active	when	the	robot	is	

disabled

								.debounce(3)	//	Delay	action	until	robot	has	been	disabled	for	a	certain	

time

								.onTrue(//	Finally	take	action

																m_robotContainer.m_driveSubsystem.setBrakeMode(false));	//	

Enable	coast	mode	in	drive	train

Notes:

The Trigger can be constructed with a BooleanSupplier. Here Robot has a method isEnabled which takes no arguments and returns a boolean. Such
methods can be treated as a BooleanSupplier. The syntax is a little tricky here because we’re trying to pass in a class method in the context
of this particular instance of Robot. We do this using the this implicit method variable and the (seldom-used) :: method reference operator.
We want to do something when the robot is disabled, but there is no isDisabled method, so we have to use isEnabled and negate it. This means
the trigger will activate whenever the isEnabled method returns false. Notice that methods like negate return a new Trigger, so they can be
chained in a terse style.
We don’t want to activate this trigger immediately the robot is disabled, but several seconds afterwards. The debounce creates a new trigger
that does not activate until its input trigger has been consistently active for some number of seconds. (If this is new to you, think about
using Debouncer the next time you have trouble with noisy beam break sensors.) Choose your own time here. It needs to be long enough that the
robot will come to a stop, but not so long that you’re standing around waiting for it. It’s also a good idea to look at the rulebook and see
if the robot has to stay in position on a ramp for some number of seconds.
Change the call to setBrakeMode as neccessary, depending on where your drive subsystem can be found.

References
Oblarg’s comment on Chief Delphi that started me on this path
WPILIB Convenience Features
WPILIB Binding Commands to Triggers
CANSparkMax Java doc
TalonFX Java doc
Trigger Java doc
Java 8 – Double Colon (::) Operator

Coast	mode	|	BoVLB’s	FRC	Tips 2	of	2

2025-01-28 11

https://first.wpi.edu/wpilib/allwpilib/docs/release/java/edu/wpi/first/math/filter/Debouncer.html#%253Cinit%253E(double)
https://www.chiefdelphi.com/t/making-carrying-loading-robots-onto-and-off-the-field-safer/413630/51?u=bovlb
https://docs.wpilib.org/en/stable/docs/software/commandbased/convenience-features.html
https://docs.wpilib.org/en/stable/docs/software/commandbased/binding-commands-to-triggers.html
https://codedocs.revrobotics.com/java/com/revrobotics/cansparkmax
https://store.ctr-electronics.com/content/api/java/html/classcom_1_1ctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_talon_f_x.html
https://first.wpi.edu/wpilib/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/Trigger.html
https://javabydeveloper.com/java-8-double-colon-operator/

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/ramps/

Ramps
This document describes ways to stop your robot from falling over in teleoperated driving.

An ideal FRC robot would have a centre of mass that is near the ground, and centred in the frame perimeter. In
practice, the various game requirements make this hard to achieve, and you often end up with a top-heavy robot
with all the weight at one end. The means that if you accelerate or decelerate too aggressively in the wrong
direction, your robot could fall over. Even if the robot doesn’t actually fall over, just picking the wheels up
could be enough to allow another robot or a game piece to slide underneath.

As with many aspects of robot programming, the answer lies in not always doing what the driver asks for. When
the driver slams the stick from full forwards to full reverse, we make the robot response lag very slightly. Ramping is usually measured in terms of
the minimum time the robot will take to go between neutral and full power. Good values for this will range between about 0.1s and 0.5s depending on
how top-heavy your robot is, and how much lag the driver will tolerate. I recommend that you set the ramp time as high as your driver will permit
(but no higher).

You might add the following to Constants:

final	static	k_rampTimeSeconds	=	0.25;

Remping is generally used for the drive train, although it can sometimes apply to other subsystems. It is also generally used only for telemetric
operation; it can also apply to autonomous routines, but that is better handled by setting maximum acceleration in path planning.

There are a number of different ways to implement ramps. [TODO: Add more than one.]

Slew Rate Limiter
The easiest and simplest way to add ramps is using a class called SlewRateLimiter. This can be applied directly to your control inputs (e.g. your
joystick) inside your arcade drive command.

You probably have an arcarde drive command where the execute method looks something like:

//	Existing	ArcardeDrive	code

double	forward	=	...;	//	Probably	from	-Y	on	the	joystick

double	turn	=	...;	//	Probably	from	X	on	the	joystick

//	Do	something	with	forward	and	turn

//	Probably	looks	like	ONE	of	the	following:

m_driveSubsystem.setPower(forward	+	turn,	forward	-	turn);

m_driveSubsystem.setSpeed((forward	+	turn)	*	k_maxSpeed,	(forward	-	turn)	*	

k_maxSpeed);

m_driveSubsystem.arcadeDrive(forward,	turn);

m_driveSubsystem.getDrivetrain().arcadeDrive(forward,	turn,	true);

To add ramping, add a new member variable in the ArcadeDrive command:

//	If	the	driver	moves	the	joystick	too	fast,	add	a	little	lag

SlewRateLimiter	m_filter	=	new	SlewRateLimiter(1.0	/	

Constants.k_rampTimeSecond);

Note that SlewRateLimiter does not take a time; instead it takes a rate (units of change per second). I have found that it’s much easier to talk to
the drivers about lag time, which is is why I use that as the defined constant. Some other ramping techniques take a time directly instead of a rate.

In ArcadeDrive.execute, simply replace forward with m_filter.calculate(forward), for example:

//	Apply	ramping	filter	to	forward	control

forward	=	m_filter.calculate(forward);

Note that we’re only applying the ramp to the forwards/backwards axis and not the turn. Rapid turns alone are not usually enough to tip the robot. If
you find that the robot turns too rapidly, remember that it’s common practice to limit the maximum permissible rate of turn. This can be done simply
by multiplying the turn value from the joystick by a constant like 0.5.

If you do decide to apply ramping to the turn control, you will need to create a second SlewRateLimiter; the filter has internal state, so don’t try
to use one filter for two data streams.

References

Ramps	|	BoVLB’s	FRC	Tips 1	of	2

2025-01-28 12

Slew Rate Limiter
Ramps	|	BoVLB’s	FRC	Tips 2	of	2

2025-01-28 13

https://docs.wpilib.org/en/stable/docs/software/advanced-controls/filters/slew-rate-limiter.html

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/safety/

Suggestions for FRC Safety
Captains
In 2020 I was a Safety Manager at a regional. I participated in pit inspections, interviews, and judging for
the safety award. Here are some suggestions I have for any Safety Captain. These are particularly intended to
be a good starting point for someone suddenly appointed as Safety Captain a few weeks or days before
competition who doesn’t know where to get started.

A team’s safety does not come from one person alone. There are things the safety captain can do individually, but real success will come from having
a team culture of safety, where people know what they have to do to be safe, and feel comfortable reminding each other.

Your team should be appointing a Safety Captain before Kickoff; see if you can make that happen next year. Does your team’s website have a safety
page? Do you have a “safety moment” at every meeting, explaining a single safety tip or describing a near miss? You’ll never avoid making mistakes,
so the important thing is to learn from them.

Binder
You should have a clearly-labelled and well-organised safety binder in the pit. This should contain:

Relevant FIRST manuals, esepcially the Safety Manual and Event Rules. You may be the only person on the team to read these, so make sure you
pass along any relevant information. Be prepared to demonstrate familiarity with these materials.
Data sheets for hazardous chemicals (e.g. glue, lubricant, basically any bottles, tubes, or spray cans in the pit). It’s fairly easy to find
these online and print them out. Manuals for tools you brought to the event. Again, almost every manual can be found online. Search on
msds.com.
Team safety manuals or training materials. Basic first aid information. How to operate a fire extinguisher (PASS=Pull, aim, squeeze, sweep).
Safety guidelines for outreach events.
Pit safety checklist List of equipment you should have. List of things you should remember to do or not do.
Event-specific information such as the nearest emergency hospital
List of people on the team with CPR/First Aid training
List of people on the team certified to operate certain types of machinery
Safety event log. Safety audit reports.
Copies of any posters or flyers you are handing out.

General responsibilities at an event
You will be expected to attend daily Safety Captain meetings, probably early each morning. This is a good venue to speak up and raise any questions
you may have, offer suggestions, raise general safety concerns, or offer praise. Keep your eyes open during the day to see if you can find something
to share. You may be asked to vote for a daily Safety Captain award.

At an event, you are also supposed to be a safety ambassador for FIRST. If you see an issue, you should draw it to someone’s attention. (Be careful
if you find yourself in the position of criticizing a specific team. Remember you can involve one of your mentors.) Direct people with injuries to
the EMT desk at pit admin. Offer (with any teammates you can gather) to take a turn on the entrance to give the volunteers there a break.

Judged awards
Since 2022, there is no longer a separate judged safety award. Instead safety is a consideration for all judged awards. This means that any judge may
perform a pit safety inspection, interview the safety captain, or review your safety binder.

Some specific things judges may look for in a pit inspection: First aid kit, battery spill kit, data sheets, daisy-chained power strips, loose hair
or clothing, food, any unsafe practices. Judges and other volunteers may also notice if people on you team are forgetting safety glasses, crowding
their pit, playing football in the aisle, transporting a robot improperly (e.g. without human first), or lifting improperly (lift with the knees, not
the back). Even if they don’t say anything, they may note your team number and pass it along. Don’t make the mistake of thinking that actions outside
of the judge interview can’t lose your team its chance at a judged award.

If you’re interviewed about safety, resist the temptation to depict the team as having a perfect safety record. No-one will believe this. It’s better
to be able to talk about how you deal with the safety issues that arise. What does the team do after an injury or a near miss? Is there a safety
event log? What have you had to change this season to improve safety?

Does this year’s game or your team’s robot design present any specific safety challenges? Have you developed any interesting approaches to mitigate
them?

If someone comes to your pit and asks a random team member where the Safety Captain is, what will they say? (Several teams I spoke to had no idea
what I was talking about.) This should be covered as part of “judge talking”. Also, you should have some visible identification as Safety Captain,
like a button, a cape, a hat, or a custom-decorated high-visibility vest. (Try to avoid selecting something that resembles a FIRST volunteer uniform,
like an orange or yellow baseball cap, or a red or black vest. There’s no rule against it, but you never want to make a judge frown. Also, you may
want to avoid wearing retroreflective tape near the field.)

Special event activities
A lot of teams have special things they do to demonstrate their commitment to safety. Some examples:

Putting up safety posters in other team’s pits and handing out safety flyers. This should be done with caution. If another team wants to put
posters and flyers in your pit, then by all means accept these as it shows good safety spirit. Don’t do this yourself unless you are truly
going to do a good job of it, as it easily becomes just more trash (with your team’s name on it).
Videos, websites, apps. This is a lot of work but it does impress judges. If you have a monitor in your pit, you can use it to show safety
videos, including ones you didn’t make.
Safety mascots
Handing out first aid kits or other safety equipment with your team’s logo on them.

Further reading
Many other people have offered advice, including:

Safety Captain purpose? - General Forum - Chief Delphi
Safety Captain - Mrs. McKeon
Advice for being a safety captain : r/FRC
Safety - FRC TEAM 2471

Suggestions	for	FRC	Safety	Captains	|	BoVLB’s	FRC	Tips 1	of	2

2025-01-28 14

https://www.scouting.org/outdoor-programs/trail-to-adventure/safety-moments-are-key-to-safer-scouting/
https://www.msds.com/
https://www.firstinspires.org/robotics/frc/blog/2021-judging-award-updates-for-the-2022-season
https://www.firstinspires.org/robotics/frc/safety
http://localhost:4000/frc-tips/safety/Spyder_mascot.png
https://www.chiefdelphi.com/t/safety-captain-purpose/133244
http://jmckeonasuprep.weebly.com/safety-captain.html
https://www.reddit.com/r/FRC/comments/a3xbbe/advice_for_being_a_safety_captain/
https://team2471.org/resources-safety/

Youth Protection Policy
YPP is an important part of safety, but this is an area where adult mentors should be strongly involved. For everyone’s protection, both adults and
students should avoid being in a situation where they are alone one-on-one, or where there is extensive private communication. Students should know
that they ought to report any situation that makes them uncomfortable, whether because of another student or a mentor.

253’s YPP guide
FIRST’s Youth Protection Program

Suggestions	for	FRC	Safety	Captains	|	BoVLB’s	FRC	Tips 2	of	2

2025-01-28 15

https://docs.google.com/document/d/11aOCu7Ju5Ehs1reSuewiS9CMg-Yq16fuKsLxR2E-Dec/edit?usp=sharing
https://www.firstinspires.org/resource-library/youth-protection-policy

The scheduler calls the four lifecycle methods of a command. This starts with
initialize when the command is first scheduled, then execute and isFinished are called
in alternation. Finally end is called either when isFinished returns trure, or when
the command is interrupted.

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/commands/

Commands
Although you can avoid it in some simple cases, doing anything complex with your FRC robot will involve creating
commands. These respond to joysticks and buttons, run your autoonomous routines, and do other maintenance
tasks.

In addition to the usual constructor, commands have four lifecycle methods: initialize, execute, isFinished, and
end. These methods are called by the command scheduler (and never by you). By overriding the implementation of
these methods, you can change the behaviour of the command.

void

initialize()

Called once whenever a command is scheduled (including default commands).
Use this to do anything your command needs to do once, such as running motors at constant speed, or initializing variables. It’s a good idea
to print a log message in this command.
Default implementation does nothing.

void	execute()

Called every cycle for scheduled commands, in alternation with isFinished.
Use this to do anything your command needs to do dynamically, like responding to joysticks or sensors, and updating internal state. You can
also use this to update SmartDashboard (although that is usually better done in subsystem periodic)
Default implementation does nothing.

boolean	isFinished()

Called every cycle for scheduled commands, in alternation with execute.
Use this to tell the scheduler when your command is complete.
Default implementation in Command returns false, so a command will run forever unless interrupted or canceled, but may be overridden (say in
InstantCommand).

void	end(boolean	interrupted)

Called when a command is descheduled, which means that isFinished has returned true, or that the command has been interrupted or cancelled.
It’s a good idea to print a log message in this command.
Use this to tidy up after the command. The typical usage is to stop motors.
Default implementation does nothing.

These methods (as well as subsystem periodic methods and any Triggers you have created) all run in a single shared thread, which is expected to run
fifty times a second. This means that they all share a total time budget of 20ms. It is important that these commands execute quickly, so avoid using
any long-running loops, sleeps, or timeouts. The scheduler will only run one command lifecycle method (initialize, isFinished, execute, end) or
subsystem periodic at a time, so if you stay within this framework you don’t have to worry about being thread-safe.

Generally commands exist in order to do something with a subsystem, like run motors. It’s very important that you never have two commands trying to
control the same motor. WPILIB’s solution to this is called “subsystem requirements”. Generally you will pass the subsystems into the command’s
constructor (along with any other configuration) to be stored for later use. In the constructor, you should also call addRequirements(...) with any
subsystems used by the command. In some complex cases, you may use a subsystem without requiring it, say because you are only reading sensor data
and setting any motor speeds.

A programmer needs to be familiar with the various command-related tricks available in WPILIB. I’ve divided them here into six groups:

Commands	|	BoVLB’s	FRC	Tips 1	of	4

2025-01-28 16

SequentialCommandGroup runs each command in turn until the last finishes.
ParallelCommandGroup runs the commands in parallel, until they all finish.
ParallelRaceGroup runs until the fastest command finishes. ParallelDeadlineGroup runs
until the first command finishes.

Command groups: Classes that take one or more commands and execute them all.
Commands for use in groups: Commands that are useful when using command groups.
Runnable wrappers: Classes that turn runnables into commands
Subsystem wrapper method: Methods on Subsystem that turn runnables into commands
Command decorators: Methods provided by all commands to connect or change them.
Running commands: How to run a command
Esoteric commands: Commands that are used only in specialized circumstances

These might seem a little complex and daunting, but the good news is that if you use them effectively your code will become simpler and easier to
read. There are many subtle gotchas about combining commands, and these help you to navigate them safely.

Command groups
These classes group togather one or more commands and
execute them all in some order. They inherit the subsystem
requirements of all of their sub-commands. The sub-commands
can be specified either in the constructor, or by
subclassing and using addCommands.

SequentialCommandGroup

Runs the sub-commands in sequence.
See also andThen and beforeStarting.

ParallelCommandGroup

Runs the sub-commands in parallel.
Finishes when the slowest sub-command is finished.
See also the decorator alongWith.

ParallelRaceGroup

Runs the sub-commands in parallel.
Finishes when the fastest sub-command is finished.
See also the decorator raceWith.

ParallelDeadlineGroup

Runs the sub-commands in parallel.
Finishes when the first command in the list is finished.
See also the decorator deadlineWith.

Commands used in groups
The following commands are useful to build command groups. Some of them take commands as arguments, and their subsystem requirements are inherited.

ConditionalCommand: Given a condition (evaluated in initialize), runs one of two sub-commands. See also the decorator unless.
SelectCommand: Takes a mapping from keys to commands, and a key selector. At initialize, the key selector is executed and then one of the sub-
commands is run.
ProxyCommand: This behaves exactly like the underlying command except that subsystem requirements are not shared between the child and parent
commands. See also the decorator asProxy. Warning: ProxyCommand works by scheduling the command independently and waiting for it to complete. A
consequence of this is that any scheduled commands with overlapping requirements will be interrupted. If this includes the command group that
is using ProxyCommand, then the proxy command will also be canceled.
RepeatCommand: Run the sub-command until it is finished, and then start it running again. See also the decorator repeatedly.
WaitCommand: Insert a delay for a specific time.
WaitUntilCommand: Insert a delay until some condition is met.

Runnable wrappers
Here are some wrapper classes that turn runnables (e.g. lambda expressions) into commands. These can be used in command groups, but they are also
used in RobotContainer to create command on-the-fly. When using these methods, please remember to add the subsystem(s) as the last parameter(s) to
make subsystem requirements work correctly.

InstantCommand: The given runnable is used as the initialize method, there is no execute or end, and isFinished returns true. You will also
sometimes inherit from InstantCommand instead of BaseCommand.
RunCommand: The given runnable is used as the execute method, there is no initialize or end, and isFinished returns false. Often used with a
decorator that adds an isFinished condition.
StartEndCommand: The given runnables are used as the initialize and end methods, there is no execute, and isFinished returns false. Commonly used
for commands that start and stop motors.
FunctionalCommand: Allows you you set all four life-cycle methods. Not used if one of the above will suffice.

Class initialize execute end isFinished

InstantCommand arg 1 true

RunCommand arg 1 false

StartEndCommand arg 1 arg 2 false

FunctionalCommand arg 1 arg 2 arg 3 arg 4

Subsystem wrapper methods
The Subsystem class provides some useful methods that provide more or less the same functionality as the classes above, with the feature that they
automatically get the subsystem as a requirement.

Method initialize execute end isFinished Equivalent to

Commands	|	BoVLB’s	FRC	Tips 2	of	4

2025-01-28 17

run arg 1 false RunCommand

runEnd arg 1 arg 2 false

runOnce arg 1 true InstantCommand

startEnd arg 1 arg 2 false StartEndCommand

startRun arg 1 arg 2 false

Method initialize execute end isFinished Equivalent to

Subsystem also provides a method defer which is used to create DeferredCommand. This take a Command supplier, so the underlying command is not
determined until initialize.

These methods are also available on Commands, but the Subsystem version is preferred because it makes it hard to forget the subsystem requirement.

Command decorators
These are methods that are provided by all Commands and allow you to create new commands that modify the underlying command in some way, or
implicitly create command groups. These can be used as an alternative way to write command groups, but are also used when creating commands on-the-
fly in RobotContainer.

alongWith: Runs the base command and the sub-command(s) in parallel ending when they are all finished (cf ParallelCommandGroup)
andThen: Runs the base command and then the sub-command(s) or runnable. See also the class SequentialCommandGroup.
asProxy: Blocks inheritance of subsystem requirements. See also the class ProxyCommand.
beforeStarting : Runs the sub-commands or runnable and then the base command. See also the class SequentialCommandGroup.
deadlineWith : Runs the base command and sub-commands in parallel, ending when the base command is finished. See also the class
ParallelDeadlineGroup.
finallyDo: Adds an (additional) end method to a command.
raceWith: Runs the base command and sub-commands in parallel, ending when any of them are finished. See also the class ParallelRaceGroup.
repeatedly: Runs the base command repeatedly. See also the class RepeatCommand.
unless : Runs the command only if the supplied BooleanSupplier is false. See also the class ConditionalCommand.
until: Overrides the isFinished method with a BooleanSupplier.
withTimeout: Adds a timer-based isFinished condition.

(I have omitted a few of the more esoteric decorators for brevity.)

Running commands
There are generally three ways to run a command:

Bind it to a trigger, usually a joystick button
Run it by default
Run it in autonomous mode

Triggers

Triggers are objects that run some command when some event takes place, like a button being pressed. The easiest way to create a trigger is by using
a CommandJoystick or CommandXboxController. Trigger objects don’t need to be stored.

CommandJoystick	joystick	=	new	CommandJoystick(0);

joystick.button(1).toggleOnTrue(new	MyCommand(...))

It is also possible to create triggers from any Boolean supplier:

new	Trigger(()	->	subsystem.getLimitSwitch()).whileTrue(...)

Some trigger methods should be passed a command to run:

onFalse: Starts the command when the trigger becomes false, e.g. the button is released. Usually the command will have its own isFinished
condition. Often used for instant commands.
onTrue: Starts the command when the trigger becomes true, e.g. the button is pressed. Usually the command will have its own isFinished
condition. Often used for instant commands.
toggleOnFalse: Starts or stops the command when the trigger becomes false. Seldom used. Usually this command will otherwise run indefinitly
(isFinished returns false).
toggleOnTrue: Starts or stops the command when the trigger becomes true. For example, press a button and the intake starts running; it keeps
running until the button is pressed a second time. Usually this command will otherwise run indefinitly (isFinished returns false).
whileFalse: Starts the command when the trigger becomes false, and stops it when the trigger becomes true. Usually this command will otherwise
run indefinitly (isFinished returns false).
whileTrue: Starts the command when the trigger becomes true, and stops it when the trigger becomes true. For example, the robot feeds balls
into the shooter while the button is pressed, and stops when it is released. Usually this command will otherwise run indefinitly (isFinished
returns false).

Some trigger methods create new triggers:

and: Combines the trigger with the parameter (often another trigger) to make a trigger than only activates when both triggers are true.
debounce: Creates a new trigger than only activates when the underlying trigger has been true for some period of time. This is useful for
physical sensors and buttons that may be jittery.
negate: Creates a new trigger that is only true when the underlying trigger is false.
or: Combines the trigger with the parameter (often another trigger) to make a trigger than only activates when either trigger is true.

Of these, you will probably use onTrue (for instant commmands), whileTrue (to run while pressed), toggleOnTrue (to turn on or off when pressed), and
debounce (to smooth noisy signals) most often.

Default commands

Sometimes you want a command to run all the time on some subsystem, unless you have something more specific to run. This is the “default command”

Commands	|	BoVLB’s	FRC	Tips 3	of	4

2025-01-28 18

onTrue starts when a button is pressed and usually ends on its own. whileTrue starts
when the button is pressed and runs until it is released. toggleOnTrue turns on or
off in alternation every time the button is pressed. onFalse, whileFalse, and
toggleOnFalse do the same, but when the button is released.

for that subsystem.

The most commonly encountered example of a default command
is the “Arcade Drive” command, which connects a joystick to
the drive subsystem. This will run all of the time, except
when you engage some autonomous driving routine.

To set the default command for a subsystem, simply call
setDefaultCommand(). Each subsystem can only have (at most)
one default command. When using default commands, it is
important that all commands using that subsystem have their
requirements set correctly; this ensures that the scheduler
will deschedule the default command when they are
scheduled.

//	in	RobotContainer.java,	in	

configureBindings()

m_driveSubsystem.setDefaultCommand(

				new	

ArcadeDriveCommand(m_driveSubsystem,

								()	->	

m_joystick1.getX(),	//	double	

supplier	for	turn

								()	->	

m_joystick1.getY());	//	double	

supplier	for	speed

Autonomous commands

TODO

Esoteric commands
These commands are used only in very specific circumstances.

NotifierCommand

RamseteCommand

ScheduleCommand

ProxyScheduleCommand

WrapperCommand

MecanumControllerCommand

SwerveControllerCommand

TrapezoidProfileCommand

See also
Binding Commands to Triggers
Command Compositions
Command interface

Commands	|	BoVLB’s	FRC	Tips 4	of	4

2025-01-28 19

https://docs.wpilib.org/en/stable/docs/software/commandbased/binding-commands-to-triggers.html
https://docs.wpilib.org/en/stable/docs/software/commandbased/command-compositions.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-
tips/commands/commandscheduler.html

CommandScheduler
When you are first taught to program, you are usually shown what is called the “imperative” style. That means
that you are in control of what happens when. In a command-based robot, you have to use an “event-driven”
style. You must learn how to break your code up into small pieces that execute quickly and rely on the
CommandScheduler to call them at the right time.

The CommandScheduler will manage commands, calling their four lifecycle methods (initialize, execute, isFinished,
end). It will also call the periodic methods of your subsystems and test any triggers you may have (mostly this
will be joystick buttons). It is also responsible for managing the requirements of commands, so two commands with overlapping requirements are never
scheduled at the same time.

There are a number of ways to invoke the CommandScheduler:

CommandScheduler.getInstance().run()

This makes the CommandScheduler perform its main loop for subsystems, triggers, and commands.
This should be called from Robot.robotPeriodic and nowhere else.
Most commands will not run while the robot is disabled, so will be automatically cancelled.

Trigger methods
After you have bound a Command to a Trigger, the CommandScheduler will then test the trigger automatically every iteration. When the trigger
activates, it will call schedule on the command.
You’re probably already using Triggers in the form of joystick buttons.

Command.schedule()

Attempts to add the command to the list of scheduled commands.
If a scheduled command has overlapping requirements, then either the other commands will be cancelled or if the other commands are non-
interruptible (rare), then the attempt will fail.
This should be called by Robot.automomousInit to set the autonomous command.
It’s fairly rare for teams to call schedule in any other context. The main example is a pattern where you create a state machine by having
each state be a separate command, with all of them sharing the same requirements, but it is usually better to do the scheduling indirectly via
Triggers. Outside that, if you find yourself wanting to call this anywhere else, you’re probably doing something wrong.
Calls to schedule from inside a command lifecycle method are deferred until after all the scheduled commands have been run.

Command.cance()

Unschedules the command
May cause a default command to be scheduled
It is common to call cancel on the autonomous command inside Robot.teleopInit.
There is also `CommandScheduler.getInstance().cancelAll
Calls to cancel from inside a command lifecycle method are deferred until after all the scheduled commands have been run, and after all the
pending schedules have been scheduled.
It’s pretty rare to have to call this. If you find yourself wanting to call this anywhere else, you’re probably doing something wrong.

Putting it all together
This is a rough outline of how everything gets run.

TimedRobot.startCompetition has an endless loop which polls its time-based priority queue for callbacks that are ready to run. Runnables are added to
that priority queue using TimedRobot.addPeriodic. By default, the only thing on that queue is IterativeRobotBase.loopFunc.

IterativeRobotBase.loopFunc does:

1. Calls <oldMode>Exit and <newMode>Init if the mode is changing
2. Calls <mode>Periodic (e.g. autoPeriodic and telopPeriodic)
3. Calls robotPeriodic
4. Updates SmartDashbaord and LiveWindow properties
5. Does loop overrun reporting

By default, the only thing robotPeriodic does is to call CommandScheduler.run.

CommandScheduler.run does the following:

1. Calls subsystem periodic methods
2. Polls its EventLoop
3. For all scheduled commands, call execute, isFinished and/or possibly end.
4. Enact pending calls to schedule and cancel
5. Schedule default commands
6. Does its own loop overrun reporting

When EventLoop.poll is called, it runs every registered Runnable. Runnables are registered using EventLoop.bind. By default, the only way Runnables are
added to the CommandScheduler’s EventLoop is by calling one of the binding methods on a Trigger.

�� Note: You can call Robot.addPeriodic to add your own periodic tasks, possibly with a different period. Don’t rely on being able to use
periods shorter than the main loop period of 20ms, because it’s all running in the same thread. Periodic methods registered with addPeriodic are
not subject to overrun reporting, so you may not notice if they’re causing performance problems.
If you are confident about thread-safe programming, you could also use Notifiers.

See also

CommandScheduler	|	BoVLB’s	FRC	Tips 1	of	2

2025-01-28 20

http://localhost:4000/best-practices.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Notifier.html

This shows the workflow of the CommandScheduler in Java. The C++ implemention has
almost identical behaviour. This diagram dooes not show command event methods

The Command Scheduler
CommandScheduler	|	BoVLB’s	FRC	Tips 2	of	2

2025-01-28 21

http://localhost:4000/frc-tips/commands/commandscheduler.png
https://docs.wpilib.org/en/stable/docs/software/commandbased/command-scheduler.html

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-
tips/commands/lambda.html

Function References, Lambda
Functions, and more

Function References
The normal way to write functions in Java is to put them in a class. Functions in a class are called “methods” and must be called either on an
instance object or (for static methods) on the class itself.

Sometimes you want to be able to use a function as an argument to another function. Such an argument is often referred to as a “callback function”,
and it allows other code to call parts of your code later in a very flexible way. An API that accepts a function reference can call your code without
having to know anything about how it is written or what your methods are called.

Callback functions typically do one of three things: They supply information; they consume information; or they do something.

For a function to be used as an argument, it has to be a “function reference”. In WPILIB, many methods related to triggers and commands will accept
function references. There are two ways to create function references: lambda functions (->) and the method reference operator (::).

Lambda Expressions

The most common way to create such function references is using a lambda expression. This is a special expression that creates a function (reference)
on-the-fly. Lambda expressions use the special operator ->. (Compare with the lambda keyword in languages like Python.)

//	Lambda	expression	for	a	function	that	takes	three	arguments	

//	and	calculates	their	sum

(x,	y,	z)	->	x	+	y	+	z

//	Same	thing,	but	with	a	statement	block

(x,	y,	z)	->	{

				return	x	+	y	+	z;

}

On the left of the -> operator is the parameter list. This has zero or more parameters in parentheses. The parentheses are optional when there is
exactly one parameter. You may specify types of the parameters, but this is almost always optional because it can be deduced from the context.

On the right of the -> operator is either an expression or a statement block in braces. A simple expression is used as the return value of the lambda
expression. A statement block is executed like a normal function body. If there is a return statement, then this defines the value returned by the
function; otherwise the function has void return.

Remember that the lambda expression only defines the function reference. Just like in a normal method, the function body is not evaluated until the
function is actually invoked.

Lambda expressions have access to local and instance variables. This means that you can simply use these variables in the function body. This allows
your lambda function to be configured in a way that is invisible to the code that calls it. It also allows it to have access to controls and
information that the calling code does not. Your lambda function can do anything that you can do, but it is packaged up as something that other code
can invoke without any explicit dependency on you.

Method Reference Operator

It is also possible to turn any method into a function reference using the :: method reference operator.

Function	References,	Lambda	Functions,	and	more	|	BoVLB’s	FRC	Tips 1	of	4

2025-01-28 22

class	MySubsystem	...	{

				...

				boolean	hasGamePiece()	{	...	}

}

...

private	final	MySubsystem	subsystem	=	new	MySubsystem();

//	Get	an	anonoymous	function	reference	with	the	same	arguments	

//	and	return	type.		Use	this	as	a	boolean	supplier	without	

//	having	to	know	about	the	subsystem.

subsystem::hasGamePiece

On the left of the :: operator is a reference to some object. In the example, subsystem is a reference to a MySubsystem object. It is also common to
see the this keyword used here, which allows you to reference methods on the current object.

On the right of the :: is the name of a (public) method defined on the object. In the example, hasGamePiece is a method defined in MySubsystem. It is
also possible to use the new keyword here, which allows you to reference the constructor method.

Putting the object reference and the method name together with the :: operator yields a function reference that has the same arguments and return
type, but which can be invoked as a function reference without reference to the instance object.

The function reference in the example above takes no arguments and returns a boolean, so matches the pattern required for a BooleanSupplier.

Interfaces
If you look up the documentation for WPILIB functions, you’ll see that they don’t actually take function references explicitly. Instead they accept
an instance of some interface like Supplier, Consumer, Runnable, or Callable.

These are all “functional interfaces” which means you can just use a function reference instead and Java will automatically convert it for you.

Type Arguments Return Methods Notes

Supplier <X>Supplier None thing supplied, e.g. boolean get or getAs<X> , e.g. getAsBoolean Supplies information, e.g. BooleanSupplier

Runnable None None run Does something, e.g. runs command

Consumer thing consumed, eg. Pose2d None accept Accepts inputs of some type

Callable None result of some type call Also supplies things, but has special uses

Suppliers (especially BooleanSuppliers) and runnables are often encountered with WPILIB, whereas consumers and callables are not.

Suppliers

A supplier is a class that supplies values of some specific type when you call the appropriate getAsX or get method. It can be created from an
anonymous function that takes no argument and returns a value of that type. Suppliers that return objects are not required to return a fresh object
every time (so would not be used for an anonymous command factory).

()	->	subsystem.hasGamePiece()	//	BooleanSupplier

()	->	joystick.getX()										//	DoubleSupplier

()	->	joystick.getX()	>	0.0				//	BooleanSupplier

These suppliers can then be used later to fetch the value:

Function	References,	Lambda	Functions,	and	more	|	BoVLB’s	FRC	Tips 2	of	4

2025-01-28 23

class	ArcadeDrive	extends	Command	{

				private	DriveSubsystem	m_subsystem;

				//	Keep	suppliers	in	instance	variables

				private	DoubleSupplier	m_speed;

				private	DoubleSupplier	m_turn;

				public	ArcadeDrive(DriveSubsystem	subsystem,	

								DoubleSupplier	speed,	DoubleSupplier	turn)	{

								m_subsystem	=	subsystem;

								//	Store	these	suppliers	for	later	use

								m_speed	=	speed;

								m_turn	=	turn;

								addRequirements(subsystem);

				}

				@Override

				void	execute()	{

								//	Get	values	from	the	suppliers

								double	drive	=	m_drive.getAsDouble();

								double	turn	=	m_turn.getAsDouble();

								m_subsystem.drive(drive+turn,	drive-turn);

				}

}

...

//	In	RobotContainer	we	connect	the	suppliers	to	the	joystick	axes

m_drive.setDefaultCommand(new	ArcadeDrive(m_drive),

				()	->	adjustJoystick(-m_joystick.getY()),

				()	->	adjustJoystick(-m_joystick.getX()));

See also the similar but different example at Default Commands.

Unboxed types (non-objects) like boolean and double have special supplier types like BooleanSupplier and DoubleSupplier with methods like getAsBoolean()
and getAsDouble() to get the value. Boxed types (objects) are treated differently: For example, a supplier for Pose2d objects would be Supplier<Pose2d>,
and the accessor is simply get().

Suppliers are a good way to isolate dependencies. In the code above, speed and turn come from a joystick, but this code doesn’t need to know anything
about joysticks. This means that you can change to a different type of joystick or even bring in semi-autonomous “driver assist”.

In WPILIB, Triggers implement the BooleanSupplier interface and often accept it.

Runnables

A Runnable is a class that has a void	run() method. It can be created from an anonymous function that takes no arguments (and any return value is
ignored). In WPILIB, it can be used to create commands on-the-fly using the classesInstantCommand, RunCommand, StartEndCommand, or FunctionalCommand or
certain Subsystem methods `. It can also be passed to many trigger methods (along with a required subsystem).

//	This	expression	can	be	used	as	a	Runnable

()	->	{	/*	do	stuff	here	*/	}

Because Runnables have no parameters and no return, they are executed solely for their side-effects.

Consumers

A Consumer is similar to a supplier but in reverse. With a Supplier, the receiver gets to decide when and how often it is called. With a Consumer, the
sender makes those decisions. Instead of having a get or getAs<TYPE> method, a Consumer has an accept method.

Function	References,	Lambda	Functions,	and	more	|	BoVLB’s	FRC	Tips 3	of	4

2025-01-28 24

Consumers are not much used in FRC programming, but they might be useful in a case where it’s important that each value be processed exactly once. An
example of this might be camera frames, or information derived from that such as robot location, or game piece locations.

//	Define	a	record	type	to	consume

public	record	VisionMeasurement(Pose2d	pose,	

				double	timestamp,	Matrix<N3,N1>	stddevs)	{}

//	Expose	a	consumer	that	processes	the	records

public	final	Consumer<VisionMeasurement>	visionMeasurementConsumer	=	(vm)	->	{	

				m_poseEstimator.addVisionMeasurement(vm.pose(),	

								vm.timestamp(),	vm.stddevs());	

};

//	...

//	Somewhere	else,	pass	new	records	to	the	consumer

m_visionMeasurementConsumer.accept(

				new	VisionMeasurement(pose,	timestamp,	stddevs));

Callables

A Callable is like a cross between Runnable and Supplier. It has a call() method that returns a value of some type. Callables may throw exceptions.

Callables are used when expecting a new result each time (like an anonymous factory), when the work involves things that might throw (like file or
network input/output), or when passing function references between threads. These are not much used in FRC programming.

See also
Functions as Data

Function	References,	Lambda	Functions,	and	more	|	BoVLB’s	FRC	Tips 4	of	4

2025-01-28 25

https://docs.wpilib.org/en/stable/docs/software/basic-programming/functions-as-data.html

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/commands/best-
practices.html

Best Practices for Command-Based
Programming
In May 2024, Oblarg posted an article on Chief Delphi that laid down some principles for best practices to
follow when doing command-based programming. Read the original post for the details, but it can be summarised
in three key points:

Control subsystems using command factories
Get information from subsystems using triggers
Co-ordinate between subsystems by binding commands to triggers

The idea is to reduce dependencies between subsystems and gather all cross-subsystem behaviour in one place. This makes your code easier to write,
easier to maintain, less likely to have bugs, and more reusable.

Summary
This diagram summarises the architecture. Starting at the bottom:

The pink boxes are the private components of the subsystem, not
directly accessible from outside.
The orange boxes represent the public API of the subsystem.

State is exposed only through Triggers. These are usually public final
member variables.
Control is exposed only through command factory methods. These are public
instance methods that take zero or more configuration parameters and return
a Command. Configuration parameters are commonly Suppliers.
The resulting Commands are considered part of the subsystem’s API, so they
are allowed to access the private components.

The green boxes represent the scheduling components.
When we bind commands to triggers, it is registered with the EventLoop. This
tests the triggers and schedules commands when appropriate.
Default commands are registered with the CommandScheduler. This runs
scheduled commands.

The blue boxes collectively represent the RobotContainer, where:
Triggers are combined (possibly between subsystems);
Commands are combined (again, possibly between subsystems); and
Commands are bound to triggers.

The RobotContainer is also responsible for setting the default commands of
subsystems, again using the subsystem’s command factories.

The grey boxes represent the fact that DriverStation buttons are
also available for triggers, and the joysticks can be used (in the
form of DoubleSuppliers) for commands (typically default).

Add command factories
A “command factory” is simply a method that returns a new instance of a
command. You should add these methods to each subsystem to represent all the basic actions someone might need the subsystem to perform. These
commands should do small, well-defined tasks like changing a setpoint or setting an internal state. Think of them as basic building blocks to be
plugged together. The implementation of these commands is entirely within the subsystem module, so they have access to all of the subsystem
internals.

Take care in choosing which commands to implement and what to name them. Remember that the core idea here is to isolate client code from knowing
anything about subsystem implementation, including any specific values for position or speed. If a subsystem has a number of positions, modes, or
speeds then you could expose an enum, but it is probably better to create a separate command factory for each one. Internally, you may want to use
enum to name and configure the different setpoints. This allows you to use setName to give each one an appropriate label for debugging.

Ideally these commands should express their purpose in terms of the problem domain (e.g. startShooting, intakeGamepiece), not how they are
implemented.

//	Shared	internal	implementation

private	Command	setState(ShooterMode	mode)	{

				return	runOnce(()	->	{

								m_mode	=	mode

				}).withName(mode.toString());

}

//	Public	command	factory

public	Command	startShooting()	{

				return	setState(ShooterMode.SHOOTING);

}

�� Tip: If you don’t understand why we’re using ()	->	{	...	} here as a Runnable, you might want to read up on Lambda functions.

These commands should share implementation whenever possible. In this way, all the commands that control a setpoint can also run the control loop.

Best	Practices	for	Command-Based	Programming	|	BoVLB’s	FRC	Tips 1	of	6

2025-01-28 26

https://www.chiefdelphi.com/t/command-based-best-practices-for-2025-community-feedback/465602?u=bovlb
http://localhost:4000/frc-tips/commands/main-diagram-dark.png
http://localhost:4000/frc-tips/commands/command-bindings.png

//	Internal	command	factory	used	by	all	the	public	command	factories

private	Command	setAngle(DoubleSupplier	angle)	{

				return	run(()	->	{

								m_setpoint	=	angle.getAsDouble();

								//	Use	m_setpoint	to	control	the	pivot	angle	here

								m_feedback	=	m_feedbackController.calculate(m_position,	m_setpoint);

								m_feedforward	=	m_feedforwardController.calculate(m_position,	

m_setpoint);

								m_power	=	MathUtil.clamp(feedforward	+	feedback,	-1.0,	1.0);

								m_motor.setPower(m_power);

				});

}

If a command needs configuration or other information from elsewhere, then either the factory or the Subsystem constructor should take a Supplier,
e.g. a BooleanSupplier or a DoubleSupplier. Pass it to the constructor if it’s a universal piece of information that might be used by multiple commands;
pass it to the command factory if it’s a detail of the specific command being constructed.

This supplier should be providing outside information from the problem space, not implementation specifics. We prefer to pass a Supplier rather than
a specific value because we want to be able to support dynamic configuration where the value changes. We prefer to pass a Supplier rather than
injecting a Subsystem because we don’t want to tie the implementations together; we should assume the minimum possible about where the information
comes from.

For example, an aiming system needs to pivot the shooter to a specific angle in order to launch a game piece into a target. The correct angle to use
is determined empirically as a function of the distance from the target. In this case, we should not supply a specific pivot angle, but instead a
distance to target. The relationship between distance and angle is an internal implementation detail of the aiming system. The distance to the target
is an appropriate problem-space concept for communication.

public	Command	setAiming(DoubleSupplier	distance)	{

				return	new	setAngle(()	->	{

								//	distance	to	speaker	in	metres

								double	distance	=	distance.getAsDouble();		

								//	m_angles	is	an	InterpolatingDoubleTreeMap

								double	angle	=	m_angles.get(distance);

								return	angle;

				}).withName("Aiming");

}

�� Tip: In the code above, we’re using ()	->	{	...	return	angle;	} to create a DoubleSupplier using a Lambda function.

Internally, commands can be created in a number of ways, but the Subsystem class provides useful methods like run and runOnce. Use run for commands
that need to keep running continually, either because they don’t do exactly the same thing on each iteration, or becase they need to block out a
default command. (Triggers provide some useful alternatives to default commands.) Use runOnce for a command that runs and then immediately ends; this
is useful for changing a setpoint or setting a mode when the command doesn’t need to enact it continually.

These building-block commands will generally have a single method (initialize or execute) and will generally not have either an end or an isFinished
implementation. Instead of adding an isFinished method, provide a Trigger that can be combined using until. Instead of adding an end method, rely on
some other command being run, such as a stop command, possibly as a default command or using andThen, but quite likely because a different Trigger has
become active.

Outside of the command factories, a subsystem should provide no other way for another class to change its behaviour. All motors, controllers, and
state must be private. It should be impossible to write a command that requires a subsystem other than by using a command factory on that subsystem.
The flip side of this is that the commands produced by the command factories should require only the subsystem that created them. Further, they
shouldn’t even know about any other subsystem. Subsystems constructors and other methods should never accept other subsystems as arguments.

Add triggers
A Trigger is essentially a wrapper for a BooleanSupplier that allows them to be bound to Commands. When the BooleanSupplier changes state, the Command
will automatically be scheduled.

Think about what information other parts of the program need from your subsystem. Try to express that in terms of yes/no questions. Explain their
meaning in terms of the problem domain (e.g. there’s a game piece in a particular place, the shooter is ready to shoot, the subsystem is in some
mode) instead of their implementation (front beam break is broken, wheels are at target speed). Publish them as Triggers.

Best	Practices	for	Command-Based	Programming	|	BoVLB’s	FRC	Tips 2	of	6

2025-01-28 27

//	There	will	be	a	separate	trigger	for	every	possible	mode.

public	final	Trigger	isShooting	=	

				new	Trigger(()	->	m_mode	==	ShooterMode.SHOOTING);

//	Is	the	arm	at	target	position	and	zero	speed?

private	boolean	isReady()	{

				return	MathUtil.isNear(m_encoder.getPosition(),	

												m_setpoint,	k_angleTolerance)	

								&&	MathUtil.isNear(m_encoder.getVelocity(),	

												0,	k_velocityTolerance);

}

//	Don't	expose	position	and	speed	directly

public	final	Trigger	isReady	=	new	Trigger(this::isReady)

				.debounce(k_isReadyDelay,	Debouncer.DebounceType.kFalling);

�� Tip: When you see ()	->	<boolean	expression> , we’re creating a BooleanSupplier using a Lambda function. this::methodName is using the method
reference operator

Apart from the Triggers, a subsystem should not expose any other information. If the subsystem has modes, each mode can be a separate trigger. Don’t
expose position and speed; instead answer problem-related questions about them.

Bind commands to triggers
Now we move onto using the command factories and triggers. Most of this will take place in RobotContainer. This class is responsible for controlling
the behaviour of subsystems and, in particular, anything that requires co-ordination between multiple subsystems.

Combining Triggers

Now that you have a good collection of Triggers, think about how they should be combined to make useful decisions about robot behaviour. For example,
when deciding whether to to shoot, you might think about various things:

Is the driver pressing the “shoot” button? All driver buttons are already Triggers.
Is there a game piece in the right location? This might be determined by beam-break sensors, but the subsystem will package this in a Trigger.
Is the robot within shooting range of the target? This may be based on a distance calculation, which in turn uses the location of the robot
(and of the target).
Are the shooter wheels ready? This may be a Trigger that compares the setpoint with the current speed.
Are we aimed at the target? This may be a Trigger that compares the pivot mechanism’s angle to the current setpoint.

The most common way of combining triggers is using and to make something happen when all of the triggers are true. There is also or for when either
Trigger is true and negate to flip the sense of a trigger. It’s common to use debounce as well, either to stop a Trigger from flickering, or to ensure
that the Command doesn’t end too soon.

Best	Practices	for	Command-Based	Programming	|	BoVLB’s	FRC	Tips 3	of	6

2025-01-28 28

//	When	the	driver	presses	the	button,	set	the	shooting	mode

shooting_button.onTrue(m_shooter.startShooting());

//	Combine	the	shooter	mode	and	other	triggers	to	shoot	the	game	piece

m_shooter.isShooting

				.and(m_shooterSensors.hasGamePiece)

				.and(isInRange)	

				.and(m_shooterFlywheel.isReady)

				.and(m_aimer.isReady)

				.whileTrue(m_feeder.feedGamePiece())

//	Stop	shooting	when	we	don't	have	a	gamepiece	or	we	go	out	of	range

m_shooter.isShooting

				.and(m_shooter.hasGamepiece.negate())

				.or(isInShootingRange.negate())

				.onTrue(m_shooter.stopShooting());

Binding Triggers to Commands

To bind a command to a trigger, simply use a method like onTrue, whileTrue
or toggleOnTrue. onTrue is good for instant commands that do something and
immediately stop. whileTrue is good for commands that should keep executing
so long as the condition is true, or which have an end action (perhaps
added using the finallyDo method). toggleOnTrue is usually only used with
driver buttons, so they can enable and disable some mode.

//	Deploy	the	intake	while	the	button	

is	held	down

JoystockButton(m_driverJoystick,	3)

				.whileTrue(m_intake.deploy()

								.finallyDo(m_intake.stop()));

Combining commands

When using triggers, you’ll find there’s much less need to combine commands to get complex behaviours. If you do need to combine commands, you can
easily do so with command decorators methods like alongWith and andThen.

//	When	we're	intaking,	do	the	three	things

m_shooter.isIntaking

				.whileTrue(m_frontManipulator.setIntaking()

								.alongWith(m_backManipulator.setIntaking()

								.alongWith(m_pivot.setIntaking())).withName("Intaking"));

Default Commands

Default commands should be fairly simple commands like stop or hold position. Such actions should already be available using command factories.
Resist the temptation to put decision logic in the default command.

Best	Practices	for	Command-Based	Programming	|	BoVLB’s	FRC	Tips 4	of	6

2025-01-28 29

m_frontManipulator.setDefaultCommand(m_frontManipulator.stop());

m_backManipulator.setDefaultCommand(m_backManipulator.stop());

m_pivot.setDefaultCommand(m_pivot.setHome());

//	Utility	method	to	adjust	joystick	values

private	DoubleSupplier	adjustJoystick(DoubleSupplier	input,	boolean	negate)	{

				return	()	->	{

								double	x	=	input.getAsDouble();

								if(negate)	{

												x	=	-x;

								}

								x	=	MathUtil.applyDeadband(x,	k_joystickDeadband);

								x	=	Math.pow(Math.abs(x),	k_joystickExponent)	*	Math.signum(x)

								return	x;

				};

}

m_drive.setDefaultCommand(

				//	drive()	is	a	command	factory	that	takes	three	double	suppliers

				m_drive.drive(

								adjustJoystick(m_gamepad::getLeftY,	true),		//	xSpeed

								adjustJoystick(m_gamepad::getLeftX,	true),		//	ySpeed

								adjustJoystick(m_gamepad::getRightX,	true)		//	rot

));

Avoid having complex default commands that make elaborate decisions. Instead put that complexity into triggers and bind the appropriate commands.

Autonomous routines

Old-school autonomous routines will be able to combine the output of command factories without much change in the way they are written. For using
PathPlanner, you can use NamedCommands.registerCommand.

Both techniques commonly need additional information to know when commands should end. The best way to do this is attach a trigger using the until
decorator (also unless, onlyWhile).

NamedCommands.registerCommand("Shoot",

				m_shooter.startShooting()

								.until(m_shooter.isIdle)

								.withName("Shoot"));

Exceptions
These best practices are general principles to improve your code. There are some case where it’s appropriate to deviate from them. For example, what
if multiple subsystems need co-ordination that can’t be achieved with booleans?

If this is the case, we should still try to cast that communication in the language of the problem-space, and not in the language of subsystem
implementation. Usually this involves exposing a Supplier, although occasionally a Comsumer is more appropriate. This decouples subsystems from each
other and makes the code base more flexible and reusable.

Pose Estimation

A good example of an exception is pose estimation. Commonly we will have some subclass of PoseEstimator and we have multiple places we want to access
it:

The drive subsystem updates it with wheel odometry
One or more vision systems update it with vision measurments
Path following needs to know the current location
Shooters need to know the distance to target

This doesn’t really fit in with the best practices outlined above. My current recommendation is to put the PoseEstimator inside the drive subsystem,
and then expose two public fields:

A pose supplier that yields a Pode2d. This can be injected where required.

Best	Practices	for	Command-Based	Programming	|	BoVLB’s	FRC	Tips 5	of	6

2025-01-28 30

A visionMeasurement consumer that accepts a record. This can be injected into the vision systems. See Consumers.

Performance
A potential issue with pervasive use of triggers is that you may end up asking the same question multiple times per iteration. There are two
problems with this:

The first is that, if answering the question requires hardware access or expensive calculation, then you can end up paying that cost repeatedly.
The second is that, if you’re using the same underlying trigger for multiple bindings, then they could get different answers within one iteration and therefore
schedule inconsistent commands.

The solution to this is to make sure that selected triggers are using a cached value that is calculated once per iteration, perhaps in a periodic
method.

Incremental Adoption
As presented here, the best practices are hard-and-fast rules that come as a package. It’s certainly possible to implement them incrementally within
an existing project, or take on some of these without others. They still provide benefit, even if you don’t implement all of them everywhere. Each of
three key points can be pursued separately, maybe even one subsystem at a time:

You might start by introducing command factories and try to wean yourself off controlling subsystems directly.
You could then start adding triggers (and other suppliers) and use them to decouple subsystems from each other.
Strictly speaking, neither command factories not subsystem triggers are required for RobotContainer to bind commands to triggers; you’re alredy doing that with
driver buttons, but you need to move the decision complexity out of commands by breaking them into simpler commands and triggers.

Subsystem Periodic Methods
Separately from the discussion of these best practices, there has been some discussion about moving away from using Subsystem.periodic methods. There
are a number of reasons for this:

If you follow these best practices, your decision-making and will happen using triggers, and your control loops will end up in commands, so you’ll naturally
end up with less for periodic to do.
Having a single periodic method per subsystem encourages programmers to throw everything together into a big mess. If you instead call addPeriodic to add
periodic tasks when required, then it forces you to think about what the separate tasks are and how often they need to run. See Putting it all together for more
advice about calling addPeriodic.
The periodic method runs at the start of the iteration. This is a good time to do pre-command actions like caching per-iteration values and updating odometry.
Unfortunately, this a bad time to do post-command actions like servicing control loops. This could instead be done in commands, if you can guarantee that there
is always one command running.
Dashboard updates can be done more elegantly through initSendable.

In summary, the Subsystem.periodic method is probably a good place to update input caches, maybe to update odometry, and possibly for logging, but
other uses should be fading away.

References
Examples of following these best practices can be seen in:

Command-based best practices for 2025: community feedback — The Chief Delphi thread that started it all.
Command Based Best Practices example — A Chief Delphi thread where people try to work through some examples of following best practices.
Some ideas for our Crescendo shooter — Many of the examples in this article are based on this code.

TODO: more

Acknowledgements
Thanks to @Oblarg for the original insights and many others for feedback and examples.

Best	Practices	for	Command-Based	Programming	|	BoVLB’s	FRC	Tips 6	of	6

2025-01-28 31

https://www.chiefdelphi.com/t/command-based-best-practices-for-2025-community-feedback/465602
https://www.chiefdelphi.com/t/command-based-best-practices-example/471176
https://gist.github.com/bovlb/23b719e6ee63aad3f7c55d3e5eac417e
https://www.chiefdelphi.com/u/oblarg

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/inspection/

See Resources for some useful resources for RIs and CSAs.

In an effort to help teams to get through the inspection process as quickly as possible, I have prepared an
unofficial annotated inspection checklist. These include all the items on the official checklist, not
necessarily in the same order. Official checklist items are clearly distinguished from my additional text.

2025
2024

These are not official FRC documents, but an attempt to address some of the common questions and confusions
about robot rules and explain common inspection procedures. The goal is to assist both robot inspectors and
teams in getting through inspection as quickly and consistently as possible. Consult the actual rules. Not every
LRI will do things the same way.

Remember that the inspector’s goal is to get safe robots onto the field as quickly as possible. The success rate
is close to 100%, so the real question is how long it takes. This guide is intended to help you get your robot through inspection as fast as
possible.

Robot Inspectors training includes a set of YouTube videos that are freely available for everyone to review: Robot Inspection Videos.

BoVLB’s	FRC	Tips	|	Tips	for	FRC	teams,	primarily	for	Java	programmers 1	of	1

2025-01-28 32

https://www.youtube.com/playlist?list=PLZT9pIgNOV6bjvvTgTTX3B4vGuJk1DsJs

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-
tips/inspection/resources.html

RI/CSA resources
These are resources that I would formerly have printed and carried around as part of my RI/CSA toolkit.
Nowadays I’m trying to go paperless, so these are (mostly) PDFs I download and put on my tablet.

Game Manual: 2025 Reefscape
Inspection Checklist: 2024
Robot Inspector Cheat Sheets: 2024 Chief Delphi post (PDFs attached)
WPILIB Documentation: Go to docs.wpilib.org, find the little black button in the
bottom right, click it, and then under “Downloads”, click on “PDF”. You
probably should bookmark the “Status Light Quick Reference” section.
Javadocs: WPILIB, CTRE Phoenix 5 & Phoenix 6, Rev (no PDF provided)
FRC Control System Diagrams: Github repo, combo PDF (Click the “Download raw
file” button)
BoVLB’s FRC Tips: Website, PDF
Safety Manual: Website, PDF
Bumpers: Bumpers Guide
Pneumatics:

Pneumatics Manual
VIDEO: How to Adjust the Pressure Relief Valve
VIDEO: How to Adjust the Pressure Relief Valve (REV PH with Analog)

April Tags: 2024
Radio: Website (no PDF provided)
Field Management System Manual: Go to fms-manual.readthedocs.io, and follow the same directions as for WPILIB

If you want to share a URL with a team, remember that Google Chrome includes QR code generation under the “Share” menu.

RI/CSA	resources	|	BoVLB’s	FRC	Tips 1	of	1

2025-01-28 33

https://firstfrc.blob.core.windows.net/frc2025/Manual/2025GameManual.pdf
https://firstfrc.blob.core.windows.net/frc2024/Manual/2024FRCInspectionChecklist.pdf
https://www.chiefdelphi.com/t/robot-inspector-cheat-sheets-2024/455444?u=bovlb
https://docs.wpilib.org/en/stable/index.html
https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://api.ctr-electronics.com/phoenix/release/java/
https://api.ctr-electronics.com/phoenix6/release/java/
https://codedocs.revrobotics.com/java/com/revrobotics/package-summary.html
https://github.com/stefacep/2025-FRC-Control-System-Diagrams
https://github.com/stefacep/2025-FRC-Control-System-Diagrams/blob/main/PDF/FRCCSD-COMBINED-ALL.pdf
https://bovlb.github.io/frc-tips/
http://localhost:4000/frc-tips/inspection/frc-tips.pdf
https://www.firstinspires.org/robotics/frc/safety
https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/team-resources/safety/ftc-frc-safety-manual.pdf
https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/technical-resources/frc_bumperguide.pdf
https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/technical-resources/frc_pneumatics_manual.pdf
https://www.youtube.com/watch?v=foQlAigAd5c
https://www.youtube.com/watch?v=GrrNMVV_Jr0
https://firstfrc.blob.core.windows.net/frc2024/FieldAssets/Apriltag_Images_and_User_Guide.pdf
https://frc-radio.vivid-hosting.net/
https://fms-manual.readthedocs.io/en/latest/index.html

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-
tips/inspection/2025.html

The Annotated Inspection
Checklist (2025)

�� Note: Based on speculative prediction before the inspection checklist is published

Size and Weight
✅ ROBOT Weight - Must be ≤ 115 lbs. (~52kg) excluding BUMPERs and battery. — R103
✅ Total Inspected Weight - ROBOT + swappable mechanisms ≤150 lbs. — I103
✅ Weight limit with BUMPERS - The total weight of the ROBOT (as described in R103) with BUMPERS must not exceed 135 lbs. (~61 kg) —
R408

Teams should join the weigh-in queue as soon as possible. For weigh-in, the bumpers should be off, and battery out. Always take the battery for all
weigh-ins. Bring both sets of bumpers. Bring any additional mechanisms you may be installing on your robot. Weigh each set of bumper separately,
together with all removable mounting hardware. Do not step on the scales.

✅ FRAME PERIMETER - Frame must be non-articulated. Minor protrusions ≤1/4” (6mm) OK. — R101
✅ STARTING CONFIGURATION - Parts may not extend past the vertical projection of the FRAME PERIMETER. — R102

This will usually be checked in the pit. If parts of your superstructure are close to the frame perimeter, the inspector may ask to borrow a straight
edge, so you should have one ready.

✅ Starting Volume - FRAME PERIMETER ≤ 120in. (~304 cm), height ≤ 42 in. (~106 cm) — R104

These will usually be measured at the inspection table after weigh-in. The frame perimeter is measured using a fabric tape measure. Feel free to
assist the inspector in making this measurement as their arms may be too short to go around the robot. The height will usually be assessed using a
stick with a crossbar. If it’s close, you may be asked to place the robot on the floor for this measurement.

✅ Playing Configuration - ROBOT may not extend beyond the FRAME PERIMETER by more than 18 in. (~457 mm) — R105

The inspector will ask you to demonstrate the robot’s maximum horizontal extension. If the robot is physically capable of exceeding 12”, then you
will be asked to demonstrate software control after the power on checks.

Bumpers
✅ Coverage - BUMPER segments protect the entire FRAME PERIMETER, any gaps between segments < 1.25” (~31 mm) — R401

Full coverage bumpers are required this year. Using a gap for strategic advantage will invite additional scrutiny.

✅ Hard BUMPER parts - Defined by BUMPER backing, may not extend >1” (~25mm) beyond ROBOT frame. — R408

Remember that this 1” allowance includes both the ≤¼” gap and the nominal ¾” backing.

✅ Support - No BUMPER segment may be unsupported by ROBOT structure/frame for a length > 8” (~20cm), Gaps ≤ 1⁄4” (~6mm) may be
wider than 8”. BUMPER segments must be supported by at least 1⁄2” (~13mm) of ROBOT frame at each end (< 1⁄4” (~6mm) gap between
segment and frame are OK) — R410 & Fig 8-8

“Support” here refers to horizontal support, not vertical. Your inspector may have a tool to assist in determining if a gap is larger than ¼”x8”.

✅ Corners - Must be filled with pool noodle such that no “hard parts” are exposed. — R409
✅ Wood backing - Must use 3⁄4” (~19mm) thick x 5±1⁄2” (~127 mm ± 12.7 mm) tall plywood, OSB, or solid robust wood backing w/out
extraneous holes affecting structural integrity. (shallow clearance pockets and/or access holes are acceptable) — R408-A
✅ Pool Noodles - Must use a pair of stacked 21⁄2” nominal (21⁄8” – 2 3⁄4”) pool noodles. Pool noodles may be any shape cross
section, solid or hollow, but both must be identical in shape and density. Must use a durable cloth cover secured as in Fig 8-6
cross section. — R408-C, R408-D
✅ Color - Must be able to display red or blue to reflect alliance color. — R405
✅ Team number - displayed with Arabic numerals, min. font 4” (~11cm) tall x 1⁄2” (~13mm) stroke, in white, and be easily read from
approximately 60’ (1828 cm) when walking around the perimeter of the ROBOT. No logos may be used for numerals. FIRST logos
comparable to 2025 Virtual KOP may also be applied — R405, R405

Inspectors will ask to see the numbers on all four sides of each bumper. If you have a reversible bumper cover, they will ask to see that
demonstrated.

✅ Attachment - Must be securely mounted when attached and be easily removable for inspection. — R404, R408-G

If your frame perimeter was measured during weigh-in, then the inspector will probably want you to attach a set of bumpers before they get to your
pit. Remember that your bumpers may be subjected to both horizontal and vertical forces during a match. The inspector will likely perform a “lift
test” where they gently apply about 25lbs of force upwards to each segment. Not only should the bumper stay attached, but it should also stay within
7½” of the ground.

✅ Height - When ROBOT is on a flat floor, all BUMPER segments must reside entirely between the floor and 71⁄2” (~19cm) above floor.
They may not be articulated. — R402, R403

Remember that any mounting hardware that is attached to the bumpers or which is removable should be within 7½” of the floor.

Mechanical
✅ No Sharp Edges or Protrusions that are a hazard for participants, ROBOTS, ARENA, or FIELD. - — R202

The inspector will usually run their hand over the robot, looking for sharp edges, especially any that face outwards.

✅ No Prohibited Materials - E.g. sound, lasers (other than class 1), flammable gases, or untreated hazardous materials — R203

A typical laser pointer is Class 3A and is therefore not permitted on an FRC robot.

If you have added ballast, make sure that any lead weights are sealed, e.g. painted.

✅ No Unsafe Energy Storage Devices - Carefully consider safety of all stored energy or pneumatic systems — R203

The inspector may ask about springs. Remember that your climber or intake might contain springs.

The	Annotated	Inspection	Checklist	(2025)	|	BoVLB’s	FRC	Tips 1	of	4

2025-01-28 34

https://frctools.com/2025/rule/R103
https://frctools.com/2025/rule/I103
https://frctools.com/2025/rule/R408
https://frctools.com/2025/rule/R101
https://frctools.com/2025/rule/R102
https://frctools.com/2025/rule/R104
https://frctools.com/2025/rule/R105
https://frctools.com/2025/rule/R401
https://frctools.com/2025/rule/R408
https://frctools.com/2025/rule/R410
https://frctools.com/2025/rule/R409
https://frctools.com/2025/rule/R408
https://frctools.com/2025/rule/R408
https://frctools.com/2025/rule/R408
https://frctools.com/2025/rule/R405
https://frctools.com/2025/rule/R405
https://frctools.com/2025/rule/R405
https://frctools.com/2025/rule/R404
https://frctools.com/2025/rule/R408
https://frctools.com/2025/rule/R402
https://frctools.com/2025/rule/R403
https://frctools.com/2025/rule/R202
https://frctools.com/2025/rule/R203
https://frctools.com/2025/rule/R203

✅ No Risk of Damage to Other ROBOTS - E.g. damaging, entangling, upending or adhering — G419, R203

Avoid having loops of wire near the frame perimeter.

✅ No Risk of Damage to FIELD - E.g. metal cleats on traction devices or sharp points on frame. — R201, R202

The inspector may examine the bottom of the robot for protruding bolts. Under-bumper intakes that come close to the floor will invite additional
scrutiny.

✅ No Risk of damage to Game Pieces - areas interacting with game pieces free of sharp or damaging surfaces — R206

The inspector will ask you to indicate the path of game pieces through the robot and will be looking for things like protruding bolts and sharp
edges.

✅ Decorations - Cannot interfere with other ROBOTS’ electronics or sensors, be in spirit of “Gracious Professionalism” — R203

Primarily the inspector will be looking for April Tags and bright lights.

✅ End Game - GAME PIECES can be removed from ROBOT and ROBOT from FIELD without power. — R204
✅ STAGE Chain - ROBOT not designed to reduce working length of field chain (e.g. create slack or twist chain) — R106

✅ End Game - GAME PIECES can be removed from ROBOT and ROBOT from FIELD without power. — R204
✅ STAGE Chain - ROBOT not designed to reduce working length of field chain (e.g. create slack or twist chain) — R106

Electrical
✅ Components - None may be modified, except for motor mounting and output shaft, motor wires may be trimmed, window motor locking
pins may be removed, and certain devices may be repaired with parts identical to the originals. PDP/PDH fuses may be replaced with
identical fuses only. Servos may be modified per manufacturer’s instructions. — R503, R710

The inspector will likely ask you to describe any changes you have made.

✅ Battery - A single 12 volt, 17-18.2 Ah ROBOT battery, securely fastened inside ROBOT. — R601, R605, R606

The inspector will expect you to secure the battery in the robot and may attempt to lift it out. Tape and/or zip ties are not usually considered to
be acceptable ways to secure the battery.

Please remember to secure your battery on the field (G411FC). If your battery strap breaks or is lost, ensure it is replaced with an acceptable
alternative.
The inspector will also check that your battery is fully insulated (R607) and will probably ask to see all of your batteries. Battery posts should
not have exposed metal.

If you have applied labels to your battery, the inspector may advise you not to cover the vents.

R604 (Charge batteries at a safe rate) prohibits the use of fast-chargers at events.

✅ Other Batteries - Integral to COTS computing device or camera or COTS USB < 100Wh (20,000mAh at 5V) and 5 Amp max output per port
used for COTS computing device and accessories only. Small batteries for CMOS/RTC are OK. — R602
✅ PDP/PDH Visibility - The single PDP/PDH, and PDP/PDH breakers must be easily visible for inspection. — R613

If your PDP/PDH is on the underside of the robot, you will be asked to invert it for inspection. The inspector may have to switch back and forth
between top and bottom.

If your PDP/PDH is behind a panel, you will probably be asked to remove it for inspection.

If the PDP/PDH is hard to examine, this will likely cause delay in inspection.

✅ Main Breaker Accessibility - The single 120A main breaker must be readily accessible with labeling preferred. — R612

The main breaker should be easy to find and accessible without putting your hand through a moving mechanism. It is not necessary that it be exposed
to the possibility of accidental operation by other robots.

The inspector will also check that your main breaker is fully insulated (R607). The two power terminals should not have exposed metal.

✅ Allowable PD Breakers - Only VB3-A, MX5-A, MX5-L Series Snap-Action breakers or REV Robotics ATO (40A or lower) may be inserted in
the PDP/PDH — R619

If you run out of the colored breakers that come with the PDH, remember you may also use the smaller black breakers from the PDP.

✅ ROBOT Radio - A single OpenMesh OM5P-AN or OM5P-AC radio powered via a VRM +12 volt, 2 amp output or REV RPM. The VRM/RPM must
connect to the dedicated +12 volt output on the PDP/PDH. Radio LEDs are easily visible — R616, R702, R707, R708

You must use either a VRM or an RPM to power the radio (R616).

Dual power (through both barrel jack and POE) is only for VRM power; you cannot do dual power if you are using an RPM (R616, R617).

POE must use the Ethernet port next to the barrel connector, which is also where the robotRIO must be connected (directly or indirectly) (R703).

If you’re using a VRM, then you can’t use the other 12V/2A terminals for a non-radio purpose.

The VRM or RPM should be connected to either:

PDP: The dedicated terminals (marked in green) on the PDP using at least 18 AWG wire
PDH: Any of the non-switchable channels (20–22) (not marked red) on the PDH with a 10A (red) fuse, using at least 22 AWG wire.

✅ CAN BUS - The roboRIO and PDP/PDH must be connected via CAN wiring even if no other CAN devices are used. — R716
✅ roboRIO Power - Only the roboRIO must be connected to dedicated power terminals on PDP/PDH. — R615

With a PDP, this means the dedicated terminals (marked in blue) with an associated 10A (red) fuse. With a PDH, this means any of the non-switchable
channels (20–22) with an associated 10A (red) fuse.

✅ Wire Size Minimum and Breaker Size - obey the wiring size conventions.

✅ All wire from battery to main breaker to PDP/PDH must be min 6 AWG (7 SWG or 16mm2) wire — R609 & Fig.8-9
✅ 40 amp breakers must have min 12 AWG (13 SWG or 4 mm2) wire connected — R622
✅ 30 amp breakers must have min 14 AWG (16 SWG or 2.5 mm2) wire connected — R622
✅ 20 amp breakers must have min 18 AWG (18 SWG or 1 mm2) wire connected — R622

The breaker/fuse protects the wire, not the other way around.

Certain devices (e.g. linear actuators, relays, PCM/PH, additional VRMs) must be on 20A or 10A regardless of wire gauge.

PDP fuses should be one 20A (yellow) and one 10A (red) as printed on the PDP itself.
PDH fuses are limited to 15A (blue) unless the robot has pneumatics.

Pneumatics may be on a 20A (yellow) fuse, but may also be on a breaker.

Looking at PDH fuses, you should expect to see two reds (radio and roboRIO) in the first three slots, and then up to two blues.

The REV Mini Power Module (MPM) is not directly addressed in the rules, but manufacturer specs indicate it should be connected to a 40A breaker and
fitted with 15A (blue) or lower fuses. The MPM cannot be used to power either the radio (directly or indirectly) or the roboRIO. It does not provide
regulated power.

The	Annotated	Inspection	Checklist	(2025)	|	BoVLB’s	FRC	Tips 2	of	4

2025-01-28 35

https://frctools.com/2025/rule/G419
https://frctools.com/2025/rule/R203
https://frctools.com/2025/rule/R201
https://frctools.com/2025/rule/R202
https://frctools.com/2025/rule/R206
https://frctools.com/2025/rule/R203
https://frctools.com/2025/rule/R204
https://frctools.com/2025/rule/R106
https://frctools.com/2025/rule/R204
https://frctools.com/2025/rule/R106
https://frctools.com//rule/R503
https://frctools.com//rule/R710
https://frctools.com//rule/R601
https://frctools.com//rule/R605
https://frctools.com//rule/R606
https://frctools.com/2025/rule/R604
https://frctools.com//rule/R602
https://frctools.com//rule/R613
https://frctools.com//rule/R612
https://frctools.com/2025/rule/R619
https://frctools.com/2025/rule/R616
https://frctools.com/2025/rule/R702
https://frctools.com/2025/rule/R707
https://frctools.com/2025/rule/R708
https://frctools.com/2025/rule/R716
https://frctools.com/2025/rule/R615
https://frctools.com/2025/rule/R609
https://frctools.com/2025/rule/R622
https://frctools.com/2025/rule/R622
https://frctools.com/2025/rule/R622

✅ Wire Colors - All power wire must be color coded - red, yellow, white, brown, or black w/stripe for +24, +12, +5 VDC supply
(positive) wires and black or blue for common (negative) for supply return wires except original wire by manufacturer — R624

Separated zip wire often presents as striped (e.g. red stripe on black) but this is legal.

✅ Copper Wire Only - All wire used on ROBOT must be copper wire. (Signal wire excluded) — R622

Watch out for any wire marked “CCA” (copper coated aluminum) as this is not legal.

✅ 1 Wire per WAGO - Only 1 wire may be inserted in each WAGO terminal. Splices and/or terminal blocks, may be used to distribute
power to multiple branch circuits but all wires in the splice are subject to the wire size rules — R618
✅ Motors - Only motors listed per Table 8-1, there may be no more than four (4) propulsion motors — R501, R502
✅ Actuators - Electrical solenoid actuators or electromagnets, less than 50 watts @12V continuous duty — R501 & Table 8-1
✅ Motor/Actuator Power - Each legal motor controller may have one motor connected to the load terminals with exceptions in Table 8-2.
Specified motors may be individually connected to Spike or Automation Direct Relay (however multiple pneumatic valves may be driven
by a single Spike) — R504, R505 & Table 8-2
✅ Motor/Actuator Control - Motors/actuators must be controlled by legal motor controllers and driven directly by PWM signals from
roboRIO or through legal MXP board or by CAN bus. — R504, R712, R713, R714, R717, R718

The inspector may ask teams to list their motors and describe how they are controlled. They are looking to verify that you are using legal
motor/controller models.

✅ Custom Circuits, Sensors and Additional Electronics - Cannot directly control speed controllers, relays, actuators or servos. Custom
Circuits may not produce voltage exceeding 24V. — R614, R625

If the inspector asks about custom circuits, teams should include a description of any cameras and lights on the robot.

✅ Pneumatic Control Module (PCM) - PCM/PH modules must be connected to roboRIO via CAN bus — R715
✅ Isolated Frame - Frame must be electrically isolated from battery, roboRIO must be insulated from frame. (>120 Ohm between either
PDP/PDH battery post and chassis) — R611

The inspector will ask you to disconnect (but not remove) the battery and close the main breaker. You should remember to open the main breaker after
the completion of this test.

The inspector will use a multimeter to measure the resistance between each of the robot’s power connectors and various points on the robot frame.

If the resistance is intermediate (say <1MΩ but >120Ω), the inspector will probably draw this to the team’s attention. This is a pass for inspection,
but may indicate a problem. Common causes include poor grounding on cameras and LED strips.

Pneumatic System using one on-board compressor (n/a for
ROBOTS that do not use pneumatics)

✅ No Modifications - Actuator mounting pins may be removed, small labels allowed. No painting or large labels. — R803
✅ Compressor - Only one (on ROBOT only) FRC Legal compressor (max 1.1 CFM flow rate) may be used. — R806
✅ Compressor Power - Must use a PCM/PH or Relay module — R812 & Table 8-2
✅ Compressor Control - A Pressure Switch must be wired directly to the PCM/PH or roboRIO to control compressor. — R812
✅ Vent Plug Valve - Must include an easily-accessible manual vent plug valve to release all system pressure. — R813
✅ Tubing - Equiv. to KOP with a maximum OD of 1⁄4” (~6 mm) (documentation may be required). — R804-D
✅ Gauges - Must be present on both the stored pressure side and working pressure side of the regulator outlet(s) and be readily
visible. — R805-E, R810
✅ Pressure Rating - All pneumatic components at working pressure, must be rated for at least 70 psi (~483 kPa, 4.8 Bar). All
components at stored pressure must be rated for at least 125 psi (~862 kPa, 8.6 Bar). — R802
✅ Valve Control - Pneumatic solenoid valves must have a max 1/8” NPT, BSPP, or BSPT port diameter, be controlled by either a PCM or
PH or Relay Module and valve outputs may not be combined. — R804-C, R814 & Table 8-2

Power On Check (Driver Station must be tethered to the
ROBOT)

✅ Unauthorized Wireless Communication - No wireless communication to/from ROBOT or OPERATOR CONSOLE without prior FIRST written
permission. No radios allowed on the OPERATOR CONSOLE or in the pit — R707, R905

The inspector may ask to see your controllers to ensure that you are not using BlueTooth.

✅ Confirm Pneumatics Operation - With no pressure in system, compressor should start when ROBOT is enabled.

✅ Compressor stops - Stops automatically at ~120 psi (~827 kPa, 8.2 Bar) or less under roboRIO control. — R807
✅ Check Main Pressure - Must be ≤ 120 psi (~827 kPa, 8.2 Bar) and Working Pressure must be ≤ 60 psi (~413 kPa, 4.1 Bar) — [R807]
(https://frctools.com/2025/rule/R807), [R808](https://frctools.com/2025/rule/R808)
✅ **Compressor Relief Valve ** - Set to 125 psi, attached to (or through hard fittings) the compressor outlet port. — R811

The relief valve cannot be connected to the compressor using soft tubing.

The inspector will test the compressor relief valve by disabling the pressure sensor. Some valves will whistle when relieving pressure, but not all
do this.

✅ Relieving Pressure Regulator - Set to ≤ 60 psi (~413 kPa, 4.1 Bar), providing all working pressure. — R808

✅ ROBOT Signal Light(s) - A legal ROBOT Signal Light (two max.) must be easily visible while standing 3 ft. (~100 cm) away from at
least one side of the ROBOT, and be plugged into the RSL port on roboRIO. Confirm that the RSL flashes in sync with roboRIO. — R709
✅ Verify Team Number on DS - Team has programmed the OpenMesh Wireless Bridge at kiosk for this event. — R702

Please remember to take your radio to the kiosk before the inspector arrives in your pit, or it will cause delay.

✅ Software Versions - The roboRIO image (FRC 2025_v2.1 or later) and DS (24.0 or later) must be loaded — R701, R901

The inspector will verify this by looking at the diagnostics tab on the Driver Station.

✅ Power Off - Disable ROBOT, then open Main Breaker to remove power from the ROBOT, confirm all LEDs are off, actuate pneumatic vent
plug valve and confirm that all pressure is vented to atmosphere and all gauges read 0 psi pressure. — R813
✅ Driver Console is less than 60” x 14” x 6’6” above floor (approx.). - May have hook and loop hook side attached to secure to Driver’s
Station shelf. — R904

Teams are recommended to take advantage of the “hook-and-loop tape” on the driver station.

Catching a falling operator console is an exception to G401 (Behind the lines) and G402 (Let the robot do its thing).

Reinspection
The LRI will typically want to reinspect robots as soon as they have finished their last qualification match and before alliance selection. Commonly

The	Annotated	Inspection	Checklist	(2025)	|	BoVLB’s	FRC	Tips 3	of	4

2025-01-28 36

https://frctools.com/2025/rule/R624
https://frctools.com/2025/rule/R622
https://frctools.com/2025/rule/R618
https://frctools.com/2025/rule/R501
https://frctools.com/2025/rule/R502
https://frctools.com/2025/rule/R501
https://frctools.com/2025/rule/R504
https://frctools.com/2025/rule/R505
https://frctools.com/2025/rule/R504
https://frctools.com/2025/rule/R712
https://frctools.com/2025/rule/R713
https://frctools.com/2025/rule/R714
https://frctools.com/2025/rule/R717
https://frctools.com/2025/rule/R718
https://frctools.com/2025/rule/R614
https://frctools.com/2025/rule/R625
https://frctools.com/2025/rule/R715
https://frctools.com/2025/rule/R611
https://frctools.com/2025/rule/R803
https://frctools.com/2025/rule/R806
https://frctools.com/2025/rule/R812
https://frctools.com/2025/rule/R812
https://frctools.com/2025/rule/R813
https://frctools.com/2025/rule/R804
https://frctools.com/2025/rule/R805
https://frctools.com/2025/rule/R810
https://frctools.com/2025/rule/R802
https://frctools.com/2025/rule/R804
https://frctools.com/2025/rule/R814
https://frctools.com/2025/rule/R707
https://frctools.com/2025/rule/R905
https://frctools.com/2025/rule/R807
https://frctools.com/2025/rule/R811
https://frctools.com/2025/rule/R808
https://frctools.com/2025/rule/R709
https://frctools.com/2025/rule/R702
https://frctools.com/2025/rule/R701
https://frctools.com/2025/rule/R901
https://frctools.com/2025/rule/R813
https://frctools.com/2025/rule/R904

RIs will try to direct you to reinspection as you come off the field.

This reinspection is primarily a re-weigh and is typically fast. Usually this is performed with the bumpers from the last match on and the battery
out. The LRI will arrange to do the necessary arithmetic to compare this with the initial weigh-in. Remember to release stored pressure from
pneumatic systems.

Teams will also be asked if they have made any modifications. Remember that modifications must be reinspected before playing a match (I104, I102).

The	Annotated	Inspection	Checklist	(2025)	|	BoVLB’s	FRC	Tips 4	of	4

2025-01-28 37

https://frctools.com/2025/rule/I104
https://frctools.com/2025/rule/I102

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-
tips/inspection/2024.html

The Annotated Inspection
Checklist (2024)
Based on 2024 FRC Inspection Checklist, Rev 3.

�� Note: This is a historical document. In particular, it does not address the use of a VH-109 radio.

Size and Weight
✅ ROBOT Weight - Must be ≤ 125 lbs. (~56kg) excluding BUMPERs and battery. — R103
✅ Total Inspected Weight - ROBOT + swappable mechanisms ≤150 lbs. — I103
✅ BUMPER Weight - Must be ≤ 15 pounds (~6kg). — R407

Teams should join the weigh-in queue as soon as possible. For weigh-in, the bumpers should be off, and battery out. Bring both sets of bumpers. Bring
any additional mechanisms you may be installing on your robot. Weigh each set of bumper separately, together with all removable mounting hardware. Do
not step on the scales.

✅ FRAME PERIMETER - Frame must be non-articulated. Minor protrusions ≤1/4” (6mm) OK. — R101
✅ STARTING CONFIGURATION - Parts may not extend past the vertical projection of the FRAME PERIMETER. — R102

This will usually be checked in the pit. If parts of your superstructure are close to the frame perimeter, the inspector may ask to borrow a straight
edge, so you should have one ready.

✅ Starting Volume - FRAME PERIMETER ≤ 120in. (~304 cm), height ≤ 48 in. (~121 cm) — R104

These will usually be measured at the inspection table after weigh-in. The frame perimeter is measured using a fabric tape measure. Feel free to
assist the inspector in making this measurement as their arms may be too short to go around the robot. The height will usually be assessed using a
stick with a crossbar. If it’s close, you may be asked to place the robot on the floor for this measurement.

✅ Playing Configuration - ROBOT may not extend beyond the FRAME PERIMETER by more than 12 in. (~30 cm) — R105

The inspector will ask you to demonstrate the robot’s maximum horizontal extension. If the robot is physically capable of exceeding 12”, then you
will be asked to demonstrate software control after the power on checks.

Inspectors will not normally measure the robot’s maximum vertical extension. This is primarily assessed by referees during a match, and inspectors
will be asked to measure it only if the head referee requests.

Bumpers
✅ Coverage - BUMPER segments protect the entire FRAME PERIMETER, any gaps between segments < 1⁄2” (~1.3cm) — R401

Full coverage bumpers are required this year. Using a gap for strategic advantage will invite additional scrutiny.

✅ Hard BUMPER parts - Defined by BUMPER backing, may not extend >1” (~25mm) beyond ROBOT frame. — R408

Remember that this 1” allowance includes both the ≤¼” gap and the nominal ¾” backing.

✅ Support - No BUMPER segment may be unsupported by ROBOT structure/frame for a length > 8” (~20cm), Gaps ≤ 1⁄4” (~6mm) may be
wider than 8”. BUMPER segments must be supported by at least 1⁄2” (~13mm) of ROBOT frame at each end (< 1⁄4” (~6mm) gap between
segment and frame are OK) — R410 & Fig 8-8

“Support” here refers to horizontal support, not vertical. Your inspector may have a tool to assist in determining if a gap is larger than ¼”x8”.

✅ Corners - Must be filled with pool noodle such that no “hard parts” are exposed. — R409
✅ Wood backing - Must use 3⁄4” (~19mm) thick x 5±1⁄2” (~127 mm ± 12.7 mm) tall plywood, OSB, or solid robust wood backing w/out
extraneous holes affecting structural integrity. (shallow clearance pockets and/or access holes are acceptable) — R408-A
✅ Pool Noodles - Must use a pair of stacked 21⁄2” nominal (21⁄8” – 2 3⁄4”) pool noodles. Pool noodles may be any shape cross
section, solid or hollow, but both must be identical in shape and density. Must use a durable cloth cover secured as in Fig 8-6
cross section. — R408-C, R408-D
✅ Color - Must be able to display red or blue to reflect alliance color. — R405
✅ Team number - displayed with Arabic numerals, min. font 4” (~11cm) tall x 1⁄2” (~13mm) stroke, in white, and be easily read from
approximately 60’ (1828 cm) when walking around the perimeter of the ROBOT. No logos may be used for numerals. FIRST logos
comparable to 2024 Virtual KOP may also be applied — R405, R405

Inspectors will ask to see the numbers on all four sides of each bumper. If you have a reversible bumper cover, they will ask to see that
demonstrated.

✅ Attachment - Must be securely mounted when attached and be easily removable for inspection. — R404, R408-G

If your frame perimeter was measured during weigh-in, then the inspector will probably want you to attach a set of bumpers before they get to your
pit. Remember that your bumpers may be subjected to both horizontal and vertical forces during a match. The inspector will likely perform a “lift
test” where they gently apply about 25lbs of force upwards to each segment. Not only should the bumper stay attached, but it should also stay within
7½” of the ground.

✅ Height - When ROBOT is on a flat floor, all BUMPER segments must reside entirely between the floor and 71⁄2” (~19cm) above floor.
They may not be articulated. — R402, R403

Remember that any mounting hardware that is attached to the bumpers or which is removable should be within 7½” of the floor.

Mechanical
✅ No Sharp Edges or Protrusions that are a hazard for participants, ROBOTS, ARENA, or FIELD. - — R202

The inspector will usually run their hand over the robot, looking for sharp edges, especially any that face outwards.

✅ No Prohibited Materials - E.g. sound, lasers (other than class 1), flammable gases, or untreated hazardous materials — R203

A typical laser pointer is Class 3A and is therefore not permitted on an FRC robot.

If you have added ballast, make sure that any lead weights are sealed, e.g. painted.

The	Annotated	Inspection	Checklist	(2024)	|	BoVLB’s	FRC	Tips 1	of	4

2025-01-28 38

https://frctools.com/2024/rule/R103
https://frctools.com/2024/rule/I103
https://frctools.com/2024/rule/R407
https://frctools.com/2024/rule/R101
https://frctools.com/2024/rule/R102
https://frctools.com/2024/rule/R104
https://frctools.com/2024/rule/R105
https://frctools.com/2024/rule/R401
https://frctools.com/2024/rule/R408
https://frctools.com/2024/rule/R410
https://frctools.com/2024/rule/R409
https://frctools.com/2024/rule/R408
https://frctools.com/2024/rule/R408
https://frctools.com/2024/rule/R408
https://frctools.com/2024/rule/R405
https://frctools.com/2024/rule/R405
https://frctools.com/2024/rule/R405
https://frctools.com/2024/rule/R404
https://frctools.com/2024/rule/R408
https://frctools.com/2024/rule/R402
https://frctools.com/2024/rule/R403
https://frctools.com/2024/rule/R202
https://frctools.com/2024/rule/R203

✅ No Unsafe Energy Storage Devices - Carefully consider safety of all stored energy or pneumatic systems — R203

The inspector may ask about springs. Remember that your climber or intake might contain springs.

✅ No Risk of Damage to Other ROBOTS - E.g. damaging, entangling, upending or adhering — G419, R203

Avoid having loops of wire near the frame perimeter.

✅ No Risk of Damage to FIELD - E.g. metal cleats on traction devices or sharp points on frame. — R201, R202

The inspector may examine the bottom of the robot for protruding bolts. Under-bumper intakes that come close to the floor will invite additional
scrutiny.

✅ No Risk of damage to Game Pieces - areas interacting with game pieces free of sharp or damaging surfaces — R206

The inspector will ask you to indicate the path of game pieces through the robot and will be looking for things like protruding bolts and sharp
edges.

✅ Decorations - Cannot interfere with other ROBOTS’ electronics or sensors, be in spirit of “Gracious Professionalism” — R203

Primarily the inspector will be looking for April Tags and bright lights.

✅ End Game - GAME PIECES can be removed from ROBOT and ROBOT from FIELD without power. — R204
✅ STAGE Chain - ROBOT not designed to reduce working length of field chain (e.g. create slack or twist chain) — R106

✅ End Game - GAME PIECES can be removed from ROBOT and ROBOT from FIELD without power. — R204
✅ STAGE Chain - ROBOT not designed to reduce working length of field chain (e.g. create slack or twist chain) — R106

Electrical
✅ Components - None may be modified, except for motor mounting and output shaft, motor wires may be trimmed, window motor locking
pins may be removed, and certain devices may be repaired with parts identical to the originals. PDP/PDH fuses may be replaced with
identical fuses only. Servos may be modified per manufacturer’s instructions. — R503, R710

The inspector will likely ask you to describe any changes you have made.

✅ Battery - A single 12 volt, 17-18.2 Ah ROBOT battery, securely fastened inside ROBOT. — R601, R605, R606

The inspector will expect you to secure the battery in the robot and may attempt to lift it out. Tape and/or zip ties are not usually considered to
be acceptable ways to secure the battery.

Please remember to secure your battery on the field (G411FC). If your battery strap breaks or is lost, ensure it is replaced with an acceptable
alternative.
The inspector will also check that your battery is fully insulated (R607) and will probably ask to see all of your batteries. Battery posts should
not have exposed metal.

If you have applied labels to your battery, the inspector may advise you not to cover the vents.

R604 (Charge batteries at a safe rate) prohibits the use of fast-chargers at events.

✅ Other Batteries - Integral to COTS computing device or camera or COTS USB < 100Wh (20,000mAh at 5V) and 5 Amp max output per port
used for COTS computing device and accessories only. Small batteries for CMOS/RTC are OK. — R602
✅ PDP/PDH Visibility - The single PDP/PDH, and PDP/PDH breakers must be easily visible for inspection. — R613

If your PDP/PDH is on the underside of the robot, you will be asked to invert it for inspection. The inspector may have to switch back and forth
between top and bottom.

If your PDP/PDH is behind a panel, you will probably be asked to remove it for inspection.

If the PDP/PDH is hard to examine, this will likely cause delay in inspection.

✅ Main Breaker Accessibility - The single 120A main breaker must be readily accessible with labeling preferred. — R612

The main breaker should be easy to find and accessible without putting your hand through a moving mechanism. It is not necessary that it be exposed
to the possibility of accidental operation by other robots.

The inspector will also check that your main breaker is fully insulated (R607). The two power terminals should not have exposed metal.

✅ Allowable PD Breakers - Only VB3-A, MX5-A, MX5-L Series Snap-Action breakers or REV Robotics ATO (40A or lower) may be inserted in
the PDP/PDH — R619

If you run out of the colored breakers that come with the PDH, remember you may also use the smaller black breakers from the PDP.

✅ ROBOT Radio - A single OpenMesh OM5P-AN or OM5P-AC radio powered via a VRM +12 volt, 2 amp output or REV RPM. The VRM/RPM must
connect to the dedicated +12 volt output on the PDP/PDH. Radio LEDs are easily visible — R616, R702, R707, R708

You must use either a VRM or an RPM to power the radio (R616).

Dual power (through both barrel jack and POE) is only for VRM power; you cannot do dual power if you are using an RPM (R616, R617).

POE must use the Ethernet port next to the barrel connector, which is also where the robotRIO must be connected (directly or indirectly) (R703).

If you’re using a VRM, then you can’t use the other 12V/2A terminals for a non-radio purpose.

The VRM or RPM should be connected to either:

PDP: The dedicated terminals (marked in green) on the PDP using at least 18 AWG wire
PDH: Any of the non-switchable channels (20–22) (not marked red) on the PDH with a 10A (red) fuse, using at least 22 AWG wire.

✅ CAN BUS - The roboRIO and PDP/PDH must be connected via CAN wiring even if no other CAN devices are used. — R716
✅ roboRIO Power - Only the roboRIO must be connected to dedicated power terminals on PDP/PDH. — R615

With a PDP, this means the dedicated terminals (marked in blue) with an associated 10A (red) fuse. With a PDH, this means any of the non-switchable
channels (20–22) with an associated 10A (red) fuse.

✅ Wire Size Minimum and Breaker Size - obey the wiring size conventions.

✅ All wire from battery to main breaker to PDP/PDH must be min 6 AWG (7 SWG or 16mm2) wire — R609 & Fig.8-9
✅ 40 amp breakers must have min 12 AWG (13 SWG or 4 mm2) wire connected — R622
✅ 30 amp breakers must have min 14 AWG (16 SWG or 2.5 mm2) wire connected — R622
✅ 20 amp breakers must have min 18 AWG (18 SWG or 1 mm2) wire connected — R622

The breaker/fuse protects the wire, not the other way around.

Certain devices (e.g. linear actuators, relays, PCM/PH, additional VRMs) must be on 20A or 10A regardless of wire gauge.

PDP fuses should be one 20A (yellow) and one 10A (red) as printed on the PDP itself.
PDH fuses are limited to 15A (blue) unless the robot has pneumatics.

Pneumatics may be on a 20A (yellow) fuse, but may also be on a breaker.

Looking at PDH fuses, you should expect to see two reds (radio and roboRIO) in the first three slots, and then up to two blues.

The	Annotated	Inspection	Checklist	(2024)	|	BoVLB’s	FRC	Tips 2	of	4

2025-01-28 39

https://frctools.com/2024/rule/R203
https://frctools.com/2024/rule/G419
https://frctools.com/2024/rule/R203
https://frctools.com/2024/rule/R201
https://frctools.com/2024/rule/R202
https://frctools.com/2024/rule/R206
https://frctools.com/2024/rule/R203
https://frctools.com/2024/rule/R204
https://frctools.com/2024/rule/R106
https://frctools.com/2024/rule/R204
https://frctools.com/2024/rule/R106
https://frctools.com//rule/R503
https://frctools.com//rule/R710
https://frctools.com//rule/R601
https://frctools.com//rule/R605
https://frctools.com//rule/R606
https://frctools.com/2024/rule/R604
https://frctools.com//rule/R602
https://frctools.com//rule/R613
https://frctools.com//rule/R612
https://frctools.com/2024/rule/R619
https://frctools.com/2024/rule/R616
https://frctools.com/2024/rule/R702
https://frctools.com/2024/rule/R707
https://frctools.com/2024/rule/R708
https://frctools.com/2024/rule/R716
https://frctools.com/2024/rule/R615
https://frctools.com/2024/rule/R609
https://frctools.com/2024/rule/R622
https://frctools.com/2024/rule/R622
https://frctools.com/2024/rule/R622

The REV Mini Power Module (MPM) is not directly addressed in the rules, but manufacturer specs indicate it should be connected to a 40A breaker and
fitted with 15A (blue) or lower fuses. The MPM cannot be used to power either the radio (directly or indirectly) or the roboRIO. It does not provide
regulated power.

✅ Wire Colors - All power wire must be color coded - red, yellow, white, brown, or black w/stripe for +24, +12, +5 VDC supply
(positive) wires and black or blue for common (negative) for supply return wires except original wire by manufacturer — R624

Separated zip wire often presents as striped (e.g. red stripe on black) but this is legal.

✅ Copper Wire Only - All wire used on ROBOT must be copper wire. (Signal wire excluded) — R622

Watch out for any wire marked “CCA” (copper coated aluminum) as this is not legal.

✅ 1 Wire per WAGO - Only 1 wire may be inserted in each WAGO terminal. Splices and/or terminal blocks, may be used to distribute
power to multiple branch circuits but all wires in the splice are subject to the wire size rules — R618
✅ Motors - Only motors listed per Table 8-1, there may be no more than four (4) propulsion motors — R501, R502
✅ Actuators - Electrical solenoid actuators or electromagnets, less than 50 watts @12V continuous duty — R501 & Table 8-1
✅ Motor/Actuator Power - Each legal motor controller may have one motor connected to the load terminals with exceptions in Table 8-2.
Specified motors may be individually connected to Spike or Automation Direct Relay (however multiple pneumatic valves may be driven
by a single Spike) — R504, R505 & Table 8-2
✅ Motor/Actuator Control - Motors/actuators must be controlled by legal motor controllers and driven directly by PWM signals from
roboRIO or through legal MXP board or by CAN bus. — R504, R712, R713, R714, R717, R718

The inspector may ask teams to list their motors and describe how they are controlled. They are looking to verify that you are using legal
motor/controller models.

✅ Custom Circuits, Sensors and Additional Electronics - Cannot directly control speed controllers, relays, actuators or servos. Custom
Circuits may not produce voltage exceeding 24V. — R614, R625

If the inspector asks about custom circuits, teams should include a description of any cameras and lights on the robot.

✅ Pneumatic Control Module (PCM) - PCM/PH modules must be connected to roboRIO via CAN bus — R715
✅ Isolated Frame - Frame must be electrically isolated from battery, roboRIO must be insulated from frame. (>120 Ohm between either
PDP/PDH battery post and chassis) — R611

The inspector will ask you to disconnect (but not remove) the battery and close the main breaker. You should remember to open the main breaker after
the completion of this test.

The inspector will use a multimeter to measure the resistance between each of the robot’s power connectors and various points on the robot frame.

If the resistance is intermediate (say <1MΩ but >120Ω), the inspector will probably draw this to the team’s attention. This is a pass for inspection,
but may indicate a problem. Common causes include poor grounding on cameras and LED strips.

Pneumatic System using one on-board compressor (n/a for
ROBOTS that do not use pneumatics)

✅ No Modifications - Actuator mounting pins may be removed, small labels allowed. No painting or large labels. — R803
✅ Compressor - Only one (on ROBOT only) FRC Legal compressor (max 1.1 CFM flow rate) may be used. — R806
✅ Compressor Power - Must use a PCM/PH or Relay module — R812 & Table 8-2
✅ Compressor Control - A Pressure Switch must be wired directly to the PCM/PH or roboRIO to control compressor. — R812
✅ Vent Plug Valve - Must include an easily-accessible manual vent plug valve to release all system pressure. — R813
✅ Tubing - Equiv. to KOP with a maximum OD of 1⁄4” (~6 mm) (documentation may be required). — R804-D
✅ Gauges - Must be present on both the stored pressure side and working pressure side of the regulator outlet(s) and be readily
visible. — R805-E, R810
✅ Pressure Rating - All pneumatic components at working pressure, must be rated for at least 70 psi (~483 kPa, 4.8 Bar). All
components at stored pressure must be rated for at least 125 psi (~862 kPa, 8.6 Bar). — R802
✅ Valve Control - Pneumatic solenoid valves must have a max 1/8” NPT, BSPP, or BSPT port diameter, be controlled by either a PCM or
PH or Relay Module and valve outputs may not be combined. — R804-C, R814 & Table 8-2

Power On Check (Driver Station must be tethered to the
ROBOT)

✅ Unauthorized Wireless Communication - No wireless communication to/from ROBOT or OPERATOR CONSOLE without prior FIRST written
permission. No radios allowed on the OPERATOR CONSOLE or in the pit — R707, R905

The inspector may ask to see your controllers to ensure that you are not using BlueTooth.

✅ Confirm Pneumatics Operation - With no pressure in system, compressor should start when ROBOT is enabled.

✅ Compressor stops - Stops automatically at ~120 psi (~827 kPa, 8.2 Bar) or less under roboRIO control. — R807
✅ Check Main Pressure - Must be ≤ 120 psi (~827 kPa, 8.2 Bar) and Working Pressure must be ≤ 60 psi (~413 kPa, 4.1 Bar) — [R807]
(https://frctools.com/2024/rule/R807), [R808](https://frctools.com/2024/rule/R808)
✅ **Compressor Relief Valve ** - Set to 125 psi, attached to (or through hard fittings) the compressor outlet port. — R811

The relief valve cannot be connected to the compressor using soft tubing.

The inspector will test the compressor relief valve by disabling the pressure sensor. Some valves will whistle when relieving pressure, but not all
do this.

✅ Relieving Pressure Regulator - Set to ≤ 60 psi (~413 kPa, 4.1 Bar), providing all working pressure. — R808

✅ ROBOT Signal Light(s) - A legal ROBOT Signal Light (two max.) must be easily visible while standing 3 ft. (~100 cm) away from at
least one side of the ROBOT, and be plugged into the RSL port on roboRIO. Confirm that the RSL flashes in sync with roboRIO. — R709
✅ Verify Team Number on DS - Team has programmed the OpenMesh Wireless Bridge at kiosk for this event. — R702

Please remember to take your radio to the kiosk before the inspector arrives in your pit, or it will cause delay.

✅ Software Versions - The roboRIO image (FRC 2024_v2.1 or later) and DS (24.0 or later) must be loaded — R701, R901

The inspector will verify this by looking at the diagnostics tab on the Driver Station.

✅ Power Off - Disable ROBOT, then open Main Breaker to remove power from the ROBOT, confirm all LEDs are off, actuate pneumatic vent
plug valve and confirm that all pressure is vented to atmosphere and all gauges read 0 psi pressure. — R813
✅ Driver Console is less than 60” x 14” x 6’6” above floor (approx.). - May have hook and loop hook side attached to secure to Driver’s
Station shelf. — R904

Teams are recommended to take advantage of the “hook-and-loop tape” on the driver station.

Catching a falling operator console is an exception to G401 (Behind the lines) and G402 (Let the robot do its thing).

The	Annotated	Inspection	Checklist	(2024)	|	BoVLB’s	FRC	Tips 3	of	4

2025-01-28 40

https://frctools.com/2024/rule/R624
https://frctools.com/2024/rule/R622
https://frctools.com/2024/rule/R618
https://frctools.com/2024/rule/R501
https://frctools.com/2024/rule/R502
https://frctools.com/2024/rule/R501
https://frctools.com/2024/rule/R504
https://frctools.com/2024/rule/R505
https://frctools.com/2024/rule/R504
https://frctools.com/2024/rule/R712
https://frctools.com/2024/rule/R713
https://frctools.com/2024/rule/R714
https://frctools.com/2024/rule/R717
https://frctools.com/2024/rule/R718
https://frctools.com/2024/rule/R614
https://frctools.com/2024/rule/R625
https://frctools.com/2024/rule/R715
https://frctools.com/2024/rule/R611
https://frctools.com/2024/rule/R803
https://frctools.com/2024/rule/R806
https://frctools.com/2024/rule/R812
https://frctools.com/2024/rule/R812
https://frctools.com/2024/rule/R813
https://frctools.com/2024/rule/R804
https://frctools.com/2024/rule/R805
https://frctools.com/2024/rule/R810
https://frctools.com/2024/rule/R802
https://frctools.com/2024/rule/R804
https://frctools.com/2024/rule/R814
https://frctools.com/2024/rule/R707
https://frctools.com/2024/rule/R905
https://frctools.com/2024/rule/R807
https://frctools.com/2024/rule/R811
https://frctools.com/2024/rule/R808
https://frctools.com/2024/rule/R709
https://frctools.com/2024/rule/R702
https://frctools.com/2024/rule/R701
https://frctools.com/2024/rule/R901
https://frctools.com/2024/rule/R813
https://frctools.com/2024/rule/R904

Reinspection
The LRI will typically want to reinspect robots as soon as they have finished their last qualification match and before alliance selection. Commonly
RIs will try to direct you to reinspection as you come off the field.

This reinspection is primarily a re-weigh and is typically fast. Usually this is performed with the bumpers from the last match on and the battery
out. The LRI will arrange to do the necessary arithmetic to compare this with the initial weigh-in. Remember to release stored pressure from
pneumatic systems.

Teams will also be asked if they have made any modifications. Remember that modifications must be reinspected before playing a match (I104, I102).

The	Annotated	Inspection	Checklist	(2024)	|	BoVLB’s	FRC	Tips 4	of	4

2025-01-28 41

https://frctools.com/2024/rule/I104
https://frctools.com/2024/rule/I102

This page is part of BoVLB's FRC Tips. Find this page online at https://bovlb.github.io/frc-tips/links/

Some useful FRC links

FIRST
Season Materials
Reefscape 2025 Game Manual, FRC Manual 2025
Discussion Fora
YouTube playlists
Portal for Incident Reporting

WPILIB
FIRST Robotics Competition Control System

WPILib Installation Guide
Status Lights

Java docs
C++ docs
Python docs
Github

CTRE (Cross The Road Electronics)
For Victor, Talon (including Falcon 500), Pigeon IMU, CAN Coder

Java docs: Phoenix 5, Phoenix 6
C++ docs: Phoenix 5, Phoenix 6
Vendor Library JSON: 2023 Phoenix5, 2024 Phoenix 5 beta, 2024 Phoenix 6 beta, 2025 Phoenix 6
Software & Downloads: Including Phoenix Tuner and Firmware download

REV Robotics
For Spark MAX

Java docs
C++ docs
REV Hardware Client
REV Software Resources
Vendor Library JSON: 2023 REVLib, 2024 REVLib, 2025 REVLib

Other
Chief Delphi
Reddit FRC

Selected teams
2102: Team Paradox: TBA, website, Github, programming tutorials, PID demo

TODO: Add more …

Some	useful	FRC	links	|	BoVLB’s	FRC	Tips 1	of	1

2025-01-28 42

https://www.firstinspires.org/resource-library/frc/competition-manual-qa-system
https://firstfrc.blob.core.windows.net/frc2025/Manual/2025GameManual.pdf
https://www.frcmanual.com/2025/introduction
https://forums.firstinspires.org/forum/general-discussions/first-programs/first-robotics-competition
https://www.youtube.com/@FIRSTRoboticsCompetition/playlists
https://www.pavesuite.com/FIRST/PublicPortal/HomePage
https://docs.wpilib.org/en/stable/index.html
https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-2/wpilib-setup.html
https://docs.wpilib.org/en/stable/docs/hardware/hardware-basics/status-lights-ref.html
https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://github.wpilib.org/allwpilib/docs/release/cpp/index.html
https://robotpy.readthedocs.io/projects/wpilib/en/stable/api.html
https://github.com/wpilibsuite/allwpilib
https://api.ctr-electronics.com/phoenix/release/java/
https://api.ctr-electronics.com/phoenix6/release/java/
https://api.ctr-electronics.com/phoenix/release/cpp/
https://api.ctr-electronics.com/phoenix6/release/cpp/
https://maven.ctr-electronics.com/release/com/ctre/phoenix/Phoenix5-frc2023-latest.json
https://maven.ctr-electronics.com/release/com/ctre/phoenix/Phoenix5-frc2024-beta-latest.json
https://maven.ctr-electronics.com/release/com/ctre/phoenix6/latest/Phoenix6-frc2024-beta-latest.json
https://maven.ctr-electronics.com/release/com/ctre/phoenix6/latest/Phoenix6-frc2025-latest.json
https://store.ctr-electronics.com/software/
https://codedocs.revrobotics.com/java/com/revrobotics/package-summary.html
https://codedocs.revrobotics.com/cpp/namespacerev.html
https://docs.revrobotics.com/rev-hardware-client/
https://www.revrobotics.com/software/
https://software-metadata.revrobotics.com/REVLib-2023.json
https://software-metadata.revrobotics.com/REVLib-2024.json
https://software-metadata.revrobotics.com/REVLib-2025.json
https://www.chiefdelphi.com/
https://www.reddit.com/r/FRC/
https://www.thebluealliance.com/team/2102
https://www.team2102.org/
https://github.com/Paradox2102
http://programming.team2102.org/
https://github.com/Paradox2102/pid_demo2

	FRC Tips
	by BoVLB
	https://bovlb.github.io/frc-tips/
	Table of Contents
	FRC tips
	Burnout
	Choosing a current limit
	Current limiting
	TalonSRX
	TalonFX (including Falcon 500)
	CAN SparkMAX
	Victor SPX

	Temperature Control
	CAN SparkMAX
	TalonSRX and TalonFX (including Falcon 500)

	See also

	CAN bus
	What is your CAN bus utilization?
	Check your wiring
	Adjusting frame rates
	REV Spark MAX
	CTRE Phoenix (e.g. Talon/Falcon, Pigeon, CANcoder)
	Motor controllers (Talon/Falcon)

	Switch motors to PWM
	Additional hardware
	CANivore

	References and further reading

	Coast mode
	Background
	Method
	Drive sybsystem
	SparkMAX
	Talon FX/SRX (including Falcon 500)

	Set brake mode on init
	Create trigger

	References

	Ramps
	Slew Rate Limiter
	References

	Suggestions for FRC Safety Captains
	Binder
	General responsibilities at an event
	Judged awards
	Special event activities
	Further reading
	Youth Protection Policy

	Commands
	void initialize()
	void execute()
	boolean isFinished()
	void end(boolean interrupted)
	Command groups
	SequentialCommandGroup
	ParallelCommandGroup
	ParallelRaceGroup
	ParallelDeadlineGroup

	Commands used in groups
	Runnable wrappers
	Subsystem wrapper methods
	Command decorators
	Running commands
	Triggers
	Default commands
	Autonomous commands

	Esoteric commands
	See also

	CommandScheduler
	CommandScheduler.getInstance().run()
	Trigger methods
	Command.schedule()
	Command.cance()
	Putting it all together
	See also

	Function References, Lambda Functions, and more
	Function References
	Lambda Expressions
	Method Reference Operator

	Interfaces
	Suppliers
	Runnables
	Consumers
	Callables

	See also

	Best Practices for Command-Based Programming
	Summary
	Add command factories
	Add triggers
	Bind commands to triggers
	Combining Triggers
	Binding Triggers to Commands
	Combining commands
	Default Commands
	Autonomous routines

	Exceptions
	Pose Estimation

	Performance
	Incremental Adoption
	Subsystem Periodic Methods
	References
	Acknowledgements

	RI/CSA resources
	The Annotated Inspection Checklist (2025)
	Size and Weight
	Bumpers
	Mechanical
	Electrical
	Pneumatic System using one on-board compressor (n/a for ROBOTS that do not use pneumatics)
	Power On Check (Driver Station must be tethered to the ROBOT)
	Reinspection

	The Annotated Inspection Checklist (2024)
	Size and Weight
	Bumpers
	Mechanical
	Electrical
	Pneumatic System using one on-board compressor (n/a for ROBOTS that do not use pneumatics)
	Power On Check (Driver Station must be tethered to the ROBOT)
	Reinspection

	Some useful FRC links
	FIRST
	WPILIB
	CTRE (Cross The Road Electronics)
	REV Robotics
	Other
	Selected teams

